scholarly journals Governing Net Zero Carbon Removals to Avoid Entrenching Inequities

2021 ◽  
Vol 3 ◽  
Author(s):  
Peter Healey ◽  
Robert Scholes ◽  
Penehuro Lefale ◽  
Pius Yanda

Climate change embeds inequities and risks reinforcing these in policies for climate change remediation. In particular, with policies designed to achieve “net zero” carbon dioxide, offsets may be considered inequitable if seen to avoid or delay gross emission reductions; offsets to emissions through technologically mature methods of carbon dioxide removals (CDR) require natural resources at scales threatening food security; knowledge of the potential of immature CDR is largely a global north monopoly; and CDR in particular environments is ill-understood and its implications for development unexamined. The use of CDR to contribute to robust progress toward Paris climate goals requires global agreement on simultaneously reducing emissions and enhancing removals, equity in burden sharing, and an interdisciplinary effort led by individual jurisdictions and focused on the co-development of technologies and governance to create CDR portfolios matched to local needs.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ghasson Shabha ◽  
Francesca Barber ◽  
Paul Laycock

PurposeThere are 29 million homes in the UK, accounting for 14% of the UK's energy consumption. This is given that UK has one of the highest water and energy demands in Europe which needs to be addressed according to the Committee on Climate Change (CCC). Smart homes technology holds a current perception that it is principally used by “tech-savvy” users with larger budgets. However, smart home technology can be used to control water, heat and energy in the entire house. This paper investigates how smart home technology could be effectively utilised to aid the UK government in meeting climate change targets and to mitigate the environmental impact of a home in use towards reducing carbon emissions.Design/methodology/approachBoth primary and secondary data were sought to gain insight into the research problem. An epistemological approach to this research is to use interpretivism to analyse data gathered via a semi-structured survey. Two groups of participants were approached: (1) professionals who are deemed knowledgeable about smart home development and implementation and (2) users of smart home technology. A variety of open-ended questions were formulated, allowing participants to elaborate by exploring issues and providing detailed qualitative responses based on their experience in this area which were interpreted quantitatively for clearer analysis.FindingsWith fossil fuel reserves depleting, there is an urgency for renewable, low carbon energy sources to reduce the 5 tonnes annual carbon emissions from a UK household. This requires a multi-faceted and a multimethod approach, relying on the involvement of both the general public and the government in order to be effective. By advancing energy grids to make them more efficient and reliable, concomitant necessitates a drastic change in the way of life and philosophy of homeowners when contemplating a reduction of carbon emissions. If both parties are able to do so, the UK is more likely to reach its 2050 net-zero carbon goal. The presence of a smart meter within the household is equally pivotal. It has a positive effect of reducing the amount of carbon emissions and hence more need to be installed.Research limitations/implicationsFurther research is needed using a larger study sample to achieve more accurate and acceptable generalisations about any future course of action. Further investigation on the specifics of smart technology within the UK household is also needed to reduce the energy consumption in order to meet net-zero carbon 2050 targets due to failures of legislation.Practical implicationsFor smart homes manufacturers and suppliers, more emphasis should be placed to enhance compatibility and interoperability of appliances and devices using different platform and creating more user's friendly manuals supported by step-by-step visual to support homeowners in the light of the wealth of knowledge base generated over the past few years. For homeowners, more emphasis should be placed on creating online knowledge management platform easily accessible which provide virtual support and technical advice to home owners to deal with any operational and technical issues or IT glitches. Developing technical design online platform for built environment professionals on incorporating smart sensors and environmentally beneficial technology during early design and construction stages towards achieving low to zero carbon homes.Originality/valueThis paper bridges a significant gap in the body of knowledge in term of its scope, theoretical validity and practical applicability, highlighting the impact of using smart home technology on the environment. It provides an insight into how the UK government could utilise smart home technology in order to reduce its carbon emission by identifying the potential link between using smart home technology and environmental sustainability in tackling and mitigating climate change. The findings can be applied to other building types and has the potential to employ aspects of smart home technology in order to manage energy and water usage including but not limited to healthcare, commercial and industrial buildings.


Author(s):  
Gordon Conway ◽  
Ousmane Badiane ◽  
Katrin Glatzel

This chapter explores threats to food security. It reveals many challenges arising from a range of threats external to the farm household, including severe biological threats from pests, disease, and weeds. Moreover, healthy, fertile soils are the cornerstone of food security and rural livelihoods, but African soils are degrading. Water is just as important for the productivity of plants, and lack of water leads to chronic and acute stress. Indeed, Africa is already battling the impacts of climate change. Rising temperatures and variable rainfall are increasing the exposure of smallholders to drought, famine, and disease. Agriculture is an important emitter of greenhouse gases (GHGs), not only carbon dioxide but also such powerful gases as methane and nitrous oxide. In addition, there are often severe socioeconomic challenges, including unstable and high prices of basic commodities. Finally, conflicts cause disruption to food security.


Author(s):  
Jeffrey Amelse

Many corporations aspire to become Net Zero Carbon Dioxide by 2030-2050. This paper examines what it will take. It requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. Reviews are provided for prior technologies for reducing CO2 emissions from fossil to focus on their limitations and to show that none offer a complete solution. Both biofuels and CO2 sequestration reduce future CO2 emissions from fossil fuels. They will not remove CO2 already in the atmosphere. Planting trees has been proposed as one solution. Trees are a temporary solution. When they die, they decompose and release their carbon as CO2 to the atmosphere. The only way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass carbon. Permanent sequestration of leaves is proposed as a solution. Leaves have a short Carbon Cycle time constant. They renew and decompose every year. Theoretically, sequestrating a fraction of the world’s tree leaves can get the world to Net Zero without disturbing the underlying forests. This would be CO2 capture in its simplest and most natural form. Permanent sequestration may be achieved by redesigning landfills to discourage decomposition. In traditional landfills, waste undergoes several stages of decomposition, including rapid initial aerobic decomposition to CO2, followed by slow anaerobic decomposition to methane and CO2. The latter can take hundreds to thousands of years. Understanding landfill chemistry provides clues to disrupting decomposition at each phase.


Climate ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Dongsu Kim ◽  
Heejin Cho ◽  
Pedro J. Mago ◽  
Jongho Yoon ◽  
Hyomun Lee

This paper presents an analysis to foresee renewable design requirement changes of net- zero carbon buildings (NZCBs) under different scenarios of potential future climate scenarios in the U.S. Northeast and Midwest regions. A climate change model is developed in this study using the Gaussian random distribution method with monthly temperature changes over the whole Northeast and Midwest regions, which are predicted based on a high greenhouse gas (GHG) emission scenario (i.e., the representative concentration pathways (RCP) 8.5). To reflect the adoption of NZCBs potential in future, this study also considers two representative future climate scenarios in the 2050s and 2080s of climate change years in the U.S. Northeast and Midwest regions. An office prototype building model integrates with an on-site photovoltaics (PV) power generation system to evaluate NZCB performance under the climate change scenarios with an assumption of a net-metering electricity purchase agreement. Appropriate capacities of the on-site PV system needed to reach NZCB balances are determined based on the building energy consumption impacted by the simulated climate scenarios. Results from this study demonstrated the emission by electricity consumption increases as moving toward the future scenarios of up to about 25 tons of CO2-eq (i.e., about 14% of the total CO2-eq produced by the electricity energy source) and the PV installation capacity to offset the emission account for the electricity consumption increases significantly up to about 40 kWp (i.e., up to more than 10% of total PV installation capacities) as the different climate scenarios are applied. It is concluded that the cooling energy consumption of office building models would significantly impact GHG emission as future climate scenarios are considered. Consequently, designers of NZCBs should consider high performance cooling energy systems in their designs to reduce the renewable energy generation system capacity to achieve net-zero carbon emission goals.


Author(s):  
PAN Jiahua

China’s declaration to the international community to peak CO2 emissions before 2030 and achieve carbon neutrality before 2060 is of great significance in advancing the objectives of the Paris Agreement, and has a positive and far-reaching impact on China’s high-quality development. This paper expounds on responsibilities and ambitions in tackling climate change, analyzes the high-quality development opportunities brought about by CO2 emissions peak and carbon neutrality, and discusses the net zero carbon emissions transformation in the new era of ecological civilization. This paper is of the view that development towards net zero carbon emissions provides a new impetus for building a Beautiful China, and promoting ecological civilization and green development. The essence of carbon neutrality should be correctly understood so that the world will work together to improve climate resilience. China should also deepen the understanding of the principles and methodologies of climate change economics.


2022 ◽  
Vol 5 ◽  
Author(s):  
Subhashni Raj ◽  
Sam Roodbar ◽  
Catherine Brinkley ◽  
David Walter Wolfe

This research highlights the mismatch between food security and climate adaptation literature and practice in the Global North and South by focusing on nested case studies in rural India and the United States during the COVID-19 pandemic. The United States is one of the wealthiest countries in the world, but also has one of the largest wealth gaps. Comparatively, India has one of the largest populations of food insecure people. To demonstrate how adaptive food security approaches to climate change will differ, we first review the unique climate, agricultural, demographic, and socio-economic features; and then compare challenges and solutions to food security posed by the COVID-19 pandemic. While both countries rely on rural, low-income farmworkers to produce food, the COVID-19 pandemic has highlighted how agricultural and food security policies differ in their influence on both food insecurity and global hunger alike. Emphasis on agricultural production in developing regions where a majority of individuals living in rural areas are smallholder subsistence farmers will benefit the majority of the population in terms of both poverty alleviation and food production. In the Global North, an emphasis on food access and availability is necessary because rural food insecure populations are often disconnected from food production.


Author(s):  
Jeffrey Amelse

Many corporations aspire to become Net Zero Carbon Dioxide by 2030-2050. This paper examines what it will take. It requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. Reviews are provided for prior technologies for reducing CO2 emissions from fossil to focus on their limitations and to show that none offer a complete solution. Both biofuels and CO2 sequestration reduce future CO2 emissions from fossil fuels. They will not remove CO2 already in the atmosphere. Planting trees has been proposed as one solution. Trees are a temporary solution. When they die, they decompose and release their carbon as CO2 to the atmosphere. The only way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass carbon. Permanent sequestration of leaves is proposed as a solution. Leaves have a short Carbon Cycle time constant. They renew and decompose every year. Theoretically, sequestrating a fraction of the world’s tree leaves can get the world to Net Zero without disturbing the underlying forests. This would be CO2 capture in its simplest and most natural form. Permanent sequestration may be achieved by redesigning landfills to discourage decomposition. In traditional landfills, waste undergoes several stages of decomposition, including rapid initial aerobic decomposition to CO2, followed by slow anaerobic decomposition to methane and CO2. The latter can take hundreds to thousands of years. Understanding landfill chemistry provides clues to disrupting decomposition at each phase.


Sign in / Sign up

Export Citation Format

Share Document