scholarly journals Implementing the Soil Enrichment Protocol at Scale: Opportunities for an Agricultural Carbon Market

2021 ◽  
Vol 3 ◽  
Author(s):  
Angelyca A. Jackson Hammond ◽  
Melissa Motew ◽  
Charles D. Brummitt ◽  
Max L. DuBuisson ◽  
Guy Pinjuv ◽  
...  

High-quality agricultural carbon credits that incentivize regenerative practices can help address climate change through greenhouse gas (GHG) abatement and CO2 sequestration. Generating large volumes of such credits requires rigorous crediting methodologies. The Soil Enrichment Protocol (SEP) by the Climate Action Reserve (CAR) aims to unlock this type of crediting potential. The SEP includes new expert-driven standards for validating the use of soil biogeochemical modeling to generate credits. Technical experts at Indigo Ag participated in the SEP working group and are supporting implementation of the first project, CAR 1459_RP1, on hundreds of thousands of acres in the US. The authors share their thoughts on new approaches enabled by the SEP as both contributors to the theory behind and practitioners of these approaches. The SEP enables scalable, high-quality credits through four main advances: (1) allowing flexibility in the use of biogeochemical models that meet explicit performance requirements, (2) enabling a new approach to field-level, modeled baselines, (3) supporting a hybrid approach of credit generation using both soil measurement and modeling, and (4) requiring a new type of credit uncertainty quantification that accounts for multiple sources of uncertainty. Together these advances support agricultural credit quantification that enables payments to offset transitional costs for growers, at large enough scales to create a robust market, with a level of rigor that ensures any credited emission reductions have real climate impact. Innovations in soil analyses, advances in research, and improvements in data collection could further improve the potential for agricultural carbon credits to scale.

2020 ◽  
Author(s):  
Andrew T. Ozga ◽  
Timothy H. Webster ◽  
Ian C. Gilby ◽  
Melissa A. Wilson ◽  
Rebecca S. Nockerts ◽  
...  

AbstractThe ability to generate genomic data from wild animal populations has the potential to give unprecedented insight into the population history and dynamics of species in their natural habitats. However, in the case of many species, it is impossible legally, ethically, or logistically to obtain tissues samples of high-quality necessary for genomic analyses. In this study we evaluate the success of multiple sources of genetic material (feces, urine, dentin, and dental calculus) and several capture methods (shotgun, whole-genome, exome) in generating genome-scale data in wild eastern chimpanzees (Pan troglodytes schweinfurthii) from Gombe National Park, Tanzania. We found that urine harbors significantly more host DNA than other sources, leading to broader and deeper coverage across the genome. Urine also exhibited a lower rate of allelic dropout. We found exome sequencing to be far more successful than both shotgun sequencing and whole-genome capture at generating usable data from low-quality samples such as feces and dental calculus. These results highlight urine as a promising and untapped source of DNA that can be noninvasively collected from wild populations of many species.


Author(s):  
Saurabh Thakur

Anthropogenic climate change has emerged as the most disruptive socio-political issue in the last few decades. The Kyoto Protocol’s failure to curb the rising greenhouse gases emissions pushed the UNFCCC-led negotiations towards a more flexible, non-binding agreement at the Paris COP21 meeting in 2015. The Paris Agreement’s hybrid approach to climate change governance, where flexible measures like the nationally determined commitments are balanced against the ambition of limiting the global temperature within the two-degree range, ensured the emergence of an increasingly complex and multi-stakeholder climate change regime. The article outlines the roadmap of the transition from the top-down approach of Kyoto Protocol to the legally non-binding, bottom-up approaches adopted for the post-Paris phase. The article outlines the post-Paris developments in international climate politics, which hold long-term geopolitical and geoeconomic implications. The article focuses on the fundamental shifts and balances within the UNFCCC architecture and examines the four fundamental features of this transition—the interpretation of differentiation and common but differentiated responsibilities, the evolving role of emerging economies in the negotiations, the rising profile of non-party stakeholders in shaping the climate action strategies and the emergence of climate justice movements as an alternate site of climate action.


2018 ◽  
Vol 15 (4) ◽  
pp. 172988141879302
Author(s):  
Liping Wang ◽  
Lian Chen ◽  
Zhufeng Shao ◽  
Liwen Guan ◽  
Li Du

To meet comprehensive performance requirements of large workspace, lightweight, and low energy consumption, and flexible supported industrial robots emerge, which are usually composed of a six-degrees-of-rotational-freedom (6R) industrial robot and a flexible support. Flexible support greatly expands the motion range of the attached industrial robot. Flexible supported industrial robots have been adopted in surface coating of large structures such as aircrafts and rockets. However, the rigid–flexible coupling exists in these robot systems. When the industrial robot moves, the reaction force and torque of the robot disturb the flexible support and introduce vibration, which may result in the deterioration of the system’s terminal accuracy. This study focuses on both the robot body accuracy and system vibration suppression to improve the terminal accuracy of the flexible supported industrial robot. Firstly, based on kinematics analysis, accuracy of the industrial robot is investigated with the local conditioning index. Then, reaction force and torque ellipsoids are proposed with the deduced dynamic model to evaluate disturbances that the industrial robot applies to the flexible support. Considering these two aspects, the high-quality workspace of the flexible supported industrial robot is established. Numerical simulations show that reaction force and torque are effectively limited in the high-quality workspace, which greatly reduce the vibration energy and improve the terminal accuracy of the system.


2020 ◽  
Vol 37 (10) ◽  
pp. 1781-1800
Author(s):  
Aaron Bagnell ◽  
Timothy DeVries

AbstractHistorical estimates of ocean heat content (OHC) are important for understanding the climate sensitivity of the Earth system and for tracking changes in Earth’s energy balance over time. Prior to 2004, these estimates rely primarily on temperature measurements from mechanical and expendable bathythermograph (BT) instruments that were deployed on large scales by naval vessels and ships of opportunity. These BT temperature measurements are subject to well-documented biases, but even the best calibration methods still exhibit residual biases when compared with high-quality temperature datasets. Here, we use a new approach to reduce biases in historical BT data after binning them to a regular grid such as would be used for estimating OHC. Our method consists of an ensemble of artificial neural networks that corrects biases with respect to depth, year, and water temperature in the top 10 m. A global correction and corrections optimized to specific BT probe types are presented for the top 1800 m. Our approach differs from most prior studies by accounting for multiple sources of error in a single correction instead of separating the bias into several independent components. These new global and probe-specific corrections perform on par with widely used calibration methods on a series of metrics that examine the residual temperature biases with respect to a high-quality reference dataset. However, distinct patterns emerge across these various calibration methods when they are extrapolated to BT data that are not included in our cross-instrument comparison, contributing to uncertainty that will ultimately impact estimates of OHC.


2021 ◽  
Vol 3 ◽  
Author(s):  
Angelyca A. Jackson Hammond ◽  
Melissa Motew ◽  
Charles D. Brummitt ◽  
Max L. DuBuisson ◽  
Guy Pinjuv ◽  
...  

2016 ◽  
Author(s):  
Dorothee C. E. Bakker ◽  
Benjamin Pfeil ◽  
Camilla S. Landa ◽  
Nicolas Metzl ◽  
Kevin M. O'Brien ◽  
...  

Abstract. The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.5 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.4 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "Living Data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).


2020 ◽  
pp. 1-45
Author(s):  
Peter Uhe ◽  
Dann Mitchell ◽  
Paul D. Bates ◽  
Myles R. Allen ◽  
Richard A. Betts ◽  
...  

AbstractPrecipitation events cause disruption around the world and will be altered by climate change. However, different climate modeling approaches can result in different future precipitation projections. The corresponding ‘method-uncertainty’ is rarely explicitly calculated in climate impact studies and major reports, but can substantially change estimated precipitation changes. A comparison across five commonly-used modeling activities shows that for changes in mean precipitation, less than half the regions analyzed had significant changes between the present climate and 1.5°C global warming for the majority of modeling activities. This increases to just over half the regions for changes between present climate and 2°C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that none of the modeling activities capture the full range of estimates from the other methods in all regions. Our results serve as an uncertainty map to help interpret which regions require a multi-method approach. Our analysis highlights the risk of over-reliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this ‘method-uncertainty’. Considering multiple sources of climate projections should reduce the risks of policymakers being unprepared for impacts of warmer climates compared to using single-method projections to make decisions.


2020 ◽  
Vol 163 (4) ◽  
pp. 707-709 ◽  
Author(s):  
Jeremy S. Ruthberg ◽  
Humzah A. Quereshy ◽  
Shadi Ahmadmehrabi ◽  
Stephen Trudeau ◽  
Emaan Chaudry ◽  
...  

During the coronavirus 2019 pandemic, there has been a surge in production of remote learning materials for continued otolaryngology resident education. Medical students traditionally rely on elective and away subinternship experiences for exposure to the specialty. Delays and cancellation of clinical rotations have forced medical students to pursue opportunities outside of the traditional learning paradigm. In this commentary, we discuss the multi-institutional development of a robust syllabus for medical students using a multimodal collection of resources. Medical students collaborated with faculty and residents from 2 major academic centers to identify essential otolaryngology topics. High-quality, publicly available, and open-access content from multiple sources were incorporated into a curriculum that appeals to a variety of learners. Multimodal remote education strategies can be used as a foundation for further innovation aimed at developing tomorrow’s otolaryngologists.


2018 ◽  
Vol 7 (9) ◽  
Author(s):  
Han Ming Gan ◽  
Melvin Vun Jye Lee ◽  
Michael A. Savka

Using Illumina and Nanopore reads, we assembled a high-quality draft genome sequence of Allorhizobium vitis K309T (= ATCC 49767T, = NCPPB 3554T), a phytopathogenic strain isolated from a grapevine in Australia. The hybrid approach generated 50% fewer contigs and a 3-fold increase in the N 50 value compared with the previous Illumina-only assembly.


2019 ◽  
Vol 12 (1) ◽  
pp. 3580-3585 ◽  
Author(s):  
Luis Rodriguez-Caro ◽  
Jennifer Fenner ◽  
Caleb Benson ◽  
Steven M Van Belleghem ◽  
Brian A Counterman

Abstract Comparisons of high-quality, reference butterfly, and moth genomes have been instrumental to advancing our understanding of how hybridization, and natural selection drive genomic change during the origin of new species and novel traits. Here, we present a genome assembly of the Southern Dogface butterfly, Zerene cesonia (Pieridae) whose brilliant wing colorations have been implicated in developmental plasticity, hybridization, sexual selection, and speciation. We assembled 266,407,278 bp of the Z. cesonia genome, which accounts for 98.3% of the estimated 271 Mb genome size. Using a hybrid approach involving Chicago libraries with Hi-Rise assembly and a diploid Meraculous assembly, the final haploid genome was assembled. In the final assembly, nearly all autosomes and the Z chromosome were assembled into single scaffolds. The largest 29 scaffolds accounted for 91.4% of the genome assembly, with the remaining ∼8% distributed among another 247 scaffolds and overall N50 of 9.2 Mb. Tissue-specific RNA-seq informed annotations identified 16,442 protein-coding genes, which included 93.2% of the arthropod Benchmarking Universal Single-Copy Orthologs (BUSCO). The Z. cesonia genome assembly had ∼9% identified as repetitive elements, with a transposable element landscape rich in helitrons. Similar to other Lepidoptera genomes, Z. cesonia showed a high conservation of chromosomal synteny. The Z. cesonia assembly provides a high-quality reference for studies of chromosomal arrangements in the Pierid family, as well as for population, phylo, and functional genomic studies of adaptation and speciation.


Sign in / Sign up

Export Citation Format

Share Document