scholarly journals Are Bumblebees Relevant Models for Understanding Wild Bee Decline?

2021 ◽  
Vol 2 ◽  
Author(s):  
Guillaume Ghisbain

The unsustainable use of ecosystems by human societies has put global biodiversity in peril. Bees are, in this context, a popular example of a highly diversified group of pollinators whose collapse is a major concern given the invaluable ecosystem services they provide. Amongst them, bumblebees (Bombus) have increasingly drawn the attention of scientists due to their dramatic population declines globally. This regression has converted them into popular conservation entities, making them the second most studied group of bees worldwide. However, in addition to have become relevant models in the fields of ecology, evolution and biogeography, bumblebees have also been used as models for studying wild bee decline and conservation worldwide. Integrating evidence from the comparative ecology and resilience of bumblebees and wild bees, I discuss the relevance of using Bombus as radars for wild bee decline worldwide. Responses of bumblebees to environmental changes are generally not comparable with those of wild bees because of their relatively long activity period, their inherent sensitivity to high temperatures, their relatively generalist diet breadth and many aspects arising from their eusocial behavior. Moreover, important differences in the available historical data between bumblebees and other bees make comparisons of conservation status even more arduous. Overall, these results reinforce the need for conservation actions that consider a higher level of understanding of ecological diversity in wild bees, highlight the need for an updated and more extensive sampling of these organisms, and emphasize that more caution is required when extrapolating trends from model species.

2017 ◽  
Vol 68 (5) ◽  
pp. 831 ◽  
Author(s):  
S. Valladares ◽  
D. X. Soto ◽  
M. Planas

The lack of integrated measures for assessing the feeding ecology of seahorses may restrict the effectiveness of conservation actions on wild populations of worldwide threatened seahorse species. Identifying dietary sources will allow researchers to determine their degree of vulnerability to environmental changes, redefine their conservation status and apply appropriate management strategies. The resource use of the seahorse Hippocampus guttulatus inhabiting coastal waters of Galicia (north-western Iberian Peninsula) was assessed for three populations and 2 years using stable isotope mixing models. The Bayesian mixing model (MixSIAR) estimated the relative contributions of the dietary sources to the seahorse diet and revealed that Caprellidea were the primary source, followed by Gammaridea and Caridea. Mysidae and Annelida represented the less dominant prey. This prey preference can be explained by the foraging behaviour of seahorses. Different contributions of Gammaridea and Caridea to the diet were found among sites, indicating different habitat characteristics and hence different habitat use by seahorses within each site. In addition, differences were encountered among sexes. Caprellidea was the dominant prey for females, whereas Gammaridea was the dominant prey for males. The findings of the present study will contribute to the knowledge of feeding patterns of H. guttulatus, providing relevant data for conservation of this endangered species.


2020 ◽  
Vol 287 (1921) ◽  
pp. 20192657 ◽  
Author(s):  
Carlos M. Herrera

Evidence for pollinator declines largely originates from mid-latitude regions in North America and Europe. Geographical heterogeneity in pollinator trends combined with geographical biases in pollinator studies can produce distorted extrapolations and limit understanding of pollinator responses to environmental changes. In contrast with the declines experienced in some well-investigated European and North American regions, honeybees seem to have increased recently in some areas of the Mediterranean Basin. Because honeybees can have negative impacts on wild bees, it was hypothesized that a biome-wide alteration in bee pollinator assemblages may be underway in the Mediterranean Basin involving a reduction in the relative number of wild bees. This hypothesis was tested using published quantitative data on bee pollinators of wild and cultivated plants from studies conducted between 1963 and 2017 in 13 countries from the European, African and Asian shores of the Mediterranean Sea. The density of honeybee colonies increased exponentially and wild bees were gradually replaced by honeybees in flowers of wild and cultivated plants. The proportion of wild bees at flowers was four times greater than that of honeybees at the beginning of the period, the proportions of both groups becoming roughly similar 50 years later. The Mediterranean Basin is a world biodiversity hotspot for wild bees and wild bee-pollinated plants, and the ubiquitous rise of honeybees to dominance as pollinators could in the long run undermine the diversity of plants and wild bees in the region.


2020 ◽  
Vol 8 (1) ◽  
pp. 269-294 ◽  
Author(s):  
Margarita M. López-Uribe ◽  
Vincent A. Ricigliano ◽  
Michael Simone-Finstrom

Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Villalta ◽  
Romain Ledet ◽  
Mathilde Baude ◽  
David Genoud ◽  
Christophe Bouget ◽  
...  

AbstractThe current decline of wild bees puts important ecosystem services such as pollination at risk. Both inventory and monitoring programs are needed to understand the causes of wild bee decline. Effective insect monitoring relies on both mass-trapping methods coupled with rapid and accurate identifications. Identifying wild bees using only morphology can be challenging, in particular, specimens from mass-trapped samples which are often in poor condition. We generated DNA barcodes for 2931 specimens representing 157 species (156 named and one unnamed species) and 28 genera. Automated cluster delineation reveals 172 BINs (Barcodes Index Numbers). A total of 36 species (22.93%) were found in highly urbanized areas. The majority of specimens, representing 96.17% of the species barcoded form reciprocally exclusive groups, allowing their unambiguous identification. This includes several closely related species notoriously difficult to identify. A total of 137 species (87.26%) show a “one-to-one” match between a named species and the BIN assignment. Fourteen species (8.92%) show deep conspecific lineages with no apparent morphological differentiation. Only two species pairs shared the same BIN making their identification with DNA barcodes alone uncertain. Therefore, our DNA barcoding reference library allows reliable identification by non-experts for the vast majority of wild bee species in the Loire Valley.


2019 ◽  
Author(s):  
Carlos M. Herrera

AbstractEvidence for pollinator declines largely originates from mid-latitude regions in North America and Europe. Geographical heterogeneity in pollinator trends combined with geographical biases in pollinator studies, can produce distorted extrapolations and limit understanding of pollinator responses to environmental changes. In contrast to the declines experienced in some well-investigated European and North American regions, honeybees seem to have increased recently in some areas of the Mediterranean Basin. Since honeybees can impact negatively on wild bees, it was hypothesized that a biome-wide alteration in bee pollinator assemblages may be underway in the Mediterranean Basin involving a reduction in the importance of wild bees as pollinators. This hypothesis was tested using published quantitative data on bee pollinators of wild and cultivated plants from studies conducted between 1963-2017 in 13 circum-Mediterranean countries. Honeybee colonies increased exponentially and wild bees were gradually replaced by honeybees in flowers of wild and cultivated plants. Proportion of wild bees at flowers quadruplicated that of honeybees at the beginning of the period, the proportions of both groups becoming roughly similar fifty years later. The Mediterranean Basin is a world biodiversity hotspot for wild bees and wild bee-pollinated plants, and the ubiquitous rise of honeybees to dominance as pollinators could in the long run undermine the diversity of plants and wild bees in the region.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250056
Author(s):  
Claus Rasmussen ◽  
Yoko L. Dupont ◽  
Henning Bang Madsen ◽  
Petr Bogusch ◽  
Dave Goulson ◽  
...  

A recurrent concern in nature conservation is the potential competition for forage plants between wild bees and managed honey bees. Specifically, that the highly sophisticated system of recruitment and large perennial colonies of honey bees quickly exhaust forage resources leading to the local extirpation of wild bees. However, different species of bees show different preferences for forage plants. We here summarize known forage plants for honey bees and wild bee species at national scale in Denmark. Our focus is on floral resources shared by honey bees and wild bees, with an emphasis on both threatened wild bee species and foraging specialist species. Across all 292 known bee species from Denmark, a total of 410 plant genera were recorded as forage plants. These included 294 plant genera visited by honey bees and 292 plant genera visited by different species of wild bees. Honey bees and wild bees share 176 plant genera in Denmark. Comparing the pairwise niche overlap for individual bee species, no significant relationship was found between their overlap and forage specialization or conservation status. Network analysis of the bee-plant interactions placed honey bees aside from most other bee species, specifically the module containing the honey bee had fewer links to any other modules, while the remaining modules were more highly inter-connected. Despite the lack of predictive relationship from the pairwise niche overlap, data for individual species could be summarized. Consequently, we have identified a set of operational parameters that, based on a high foraging overlap (>70%) and unfavorable conservation status (Vulnerable+Endangered+Critically Endangered), can guide both conservation actions and land management decisions in proximity to known or suspected populations of these species.


2020 ◽  
Vol 65 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Alexandra Harmon-Threatt

Nest site availability and quality are important for maintaining robust populations and communities of wild bees. However, for most species, nesting traits and nest site conditions are poorly known, limiting both our understanding of basic ecology for bee species and conservation efforts. Additionally, many of the threats commonly associated with reducing bee populations have effects that can extend into nests but are largely unstudied. In general, threats such as habitat disturbances and climate change likely affect nest site availability and nest site conditions, which in turn affect nest initiation, growth, development, and overwintering success of bees. To facilitate a better understanding of how these and other threats may affect nesting bees, in this review, I quantify key nesting traits and environmental conditions and then consider how these traits may intersect with observed and anticipated changes in nesting conditions experienced by wild bees. These data suggest that the effects of common threats to bees through nesting may strongly influence their survival and persistence but are vastly understudied. Increasing research into nesting biology and incorporating nesting information into conservation efforts may help improve conservation of this declining but critical group.


2021 ◽  
Author(s):  
Nicole Beyer ◽  
Felix Kirsch ◽  
Doreen Gabriel ◽  
Catrin Westphal

Abstract Context Pollinator declines and functional homogenization of farmland insect communities have been reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional trait compositions of wild bee communities is scarce. Objective We investigated how two morphologically different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). Methods We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were grown, paired with respective control landscapes without grain legumes. Results Faba bean cultivation promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Conclusions Our results show that MFC support specific functional bee groups adapted to their flower morphology and can alter pollinators` functional trait composition. We conclude that management practices need to target the cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to create heterogeneous landscapes, which sustain diverse pollinator communities.


Oecologia ◽  
2021 ◽  
Author(s):  
Susanne S. Renner ◽  
Marie Sophie Graf ◽  
Zoe Hentschel ◽  
Helen Krause ◽  
Andreas Fleischmann

AbstractThe increase in managed honeybees (Apis mellifera) in many European cities has unknown effects on the densities of wild bees through competition. To investigate this, we monitored honeybees and non-honeybees from 01 April to 31 July 2019 and 2020 at 29 species of plants representing diverse taxonomic and floral-functional types in a large urban garden in the city of Munich in which the same plant species were cultivated in both years. No bee hives were present in the focal garden, and all bee hives in the adjacent area were closely monitored by interviewing the relevant bee keepers in both 2019 and 2020. Honeybee numbers were similar in April of both years, but increased from May to July 2020 compared to 2019. The higher densities correlated with a significant increase in shifts from wild bee to honeybee visits in May/June/July, while visitor spectra in April 2019 and 2020 remained the same. Most of the species that experienced a shift to honeybee visits in 2020 were visited mostly or exclusively for their nectar. There were no shifts towards increased wild bee visits in any species. These results from a flower-rich garden have implications for the discussion of whether urban bee keeping might negatively impact wild bees. We found clear support that high honeybee densities result in exploitative competition at numerous types of flowers.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Beth A. Polidoro ◽  
Cristiane T. Elfes ◽  
Jonnell C. Sanciangco ◽  
Helen Pippard ◽  
Kent E. Carpenter

Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciform fish groups. Many of the species in these groups are threatened by the modification or destruction of coastal habitats, overfishing from direct or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania, many important fish groups are still in urgent need of assessment.


Sign in / Sign up

Export Citation Format

Share Document