scholarly journals Amelogenin Peptide-Chitosan Hydrogel for Biomimetic Enamel Regrowth

2021 ◽  
Vol 2 ◽  
Author(s):  
Kaushik Mukherjee ◽  
Amrita Chakraborty ◽  
Garima Sandhu ◽  
Sohaib Naim ◽  
E. Bauza Nowotny ◽  
...  

We designed synthetic peptides that have demonstrated an effective remineralization potential to restore incipient enamel decay. In order to develop a clinically viable approach we incorporated the amelogenin-derived peptides P26 and P32 into chitosan hydrogel and examined their efficacy in the remineralization of enamel. Peptides in chitosan exhibited increased stability in vitro as compared to peptides in solution at room temperature and at 37°C. Tooth models for enamel erosion (sections) and white spot lesions (blocks) were subject to periods of demineralization. Treatment groups were subjected to remineralization in artificial saliva in the presence of P26 and P32 in solution and in chitosan hydrogel (P26-CS and P32-CS). Quantitative light-induced fluorescence (QLF) was employed to analyze mineral density following demineralization and remineralization across all the treatment groups. Scanning electron microscopy and nanoindentation were used to characterize the surface structure and mechanical strength of regrown enamel. Control enamel sections treated in artificial saliva demonstrated randomly distributed, tiny, needle-shaped crystals with a low packing density and porosities displaying mineralization defects. In samples treated with P26-CS or P32-CS a denser coating of organized hydroxyapatite (HAP) crystals was formed covering the entire surfaces of demineralized enamel window. The hardness and modulus of enamel surfaces were increased after treatment with P26-CS and P32-CS with no significant difference in the mechanical properties between the two peptide hydrogels. Analysis of mineral density by QLF showed that in enamel sections P26 peptide alone or P26-CS significantly enhanced the remineralization. In enamel blocks P26 in solution had a better efficacy than P26-CS.

2019 ◽  
Vol 43 (5) ◽  
pp. 337-344 ◽  
Author(s):  
Mohammed Nadeem Ahmed Bijle ◽  
Lai Pui Tung ◽  
Jasmine Wong ◽  
Manikandan Ekambaram ◽  
Edward CM Lo ◽  
...  

Objective(s): The incorporation of Arginine (Arg) in NaF-containing child dentifrice might enhance its remineralizing potential, reducing fluorosis risk with significant anti-caries benefit. The study objective was to examine the remineralizing potential of arginine in child formula dentifrice (600-ppm NaF).Study Design: Primary teeth enamel specimens (n = 10) with artificial caries-like lesion were randomly divided to 4 treatment groups: A: 2% Arg-(600-ppm) NaF; B: 600-ppm NaF; C: 1100-ppm NaF; and D: deionized water subjected to 7-day pH-cycling. The mineral density (MD) of the treated specimens was assessed using micro-CT. The pre-/post-treated artificial caries-like lesion were acid-etched for enamel fluoride uptake (EFU) evaluation, Ca and P element analysis using ICP-OES, and the inorganic phosphate (PO43−) determination using colorimetric assay. Results: The percentage remineralization of the 2% Arg-NaF and 1100-ppm NaF groups was significantly higher than the 600-ppm NaF group (p<0.001). However, no significant difference in remineralization was observed between the two groups (p>0.05). The EFU, Ca/P ratio, PO43− content of the 2% Arg-NaF group were significantly higher than the 600-ppm NaF group (p<0.01); while no significant difference was found between the 2% Arg-NaF and 1100-ppm NaF groups. Conclusion: Within the limitations of the present study, incorporation of 2% arginine in 600-ppm NaF child formula dentifrice enhanced the remineralization potential of artificial enamel caries, to a level comparable to 1100-ppm NaF adult formula dentifrice.


2020 ◽  
Vol 47 (3) ◽  
pp. 266-276 ◽  
Author(s):  
Soyoung Kim ◽  
Sangho Lee ◽  
Nanyoung Lee ◽  
Myeongkwan Jih

The purpose of this study was to compare the remineralization effect of 38% silver diamine fluoride (SDF) and 5% sodium fluoride (NaF) varnish on artificially induced enamel caries.The present study standardized the physiochemical characteristics of the tooth structure using bovine teeth, realized the wash-off action of agents using a saliva, reproduced an environment similar to mouth through pH-cycling, and comparatively assessed the remineralization effect of 38% SDF and 5% NaF varnish in a non-destructive method using micro-CT. And the remineralized enamel surface structure was analyzed by scanning electron microscopy (SEM) and energy dispersive X-Ray spectroscopy (EDS).In both SDF and NaF varnish, mineral density (△Hounsfield unit value) and the volume of enamel restored to normal mineral density through remineralization gradually increased with time. And the SDF showed a much higher level of increase in mineral density at all depths and remineralized volume than NaF varnish.According to SEM analysis, the surface roughness decreased in the order of artificial saliva, NaF varnish and SDF. In addition, EDS analysis showed that silver ion was precipitated on the enamel surface in SDF group.In conclusion, SDF had a greater remineralization effect than NaF varnish on demineralized enamel.


2021 ◽  
Author(s):  
Lethycia Almeida Santos ◽  
Tatiana Martini ◽  
João Victor Frazão Câmara ◽  
Fabiana Navas Reis ◽  
Adriana de Cássia Ortiz ◽  
...  

The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into two groups (n=135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/ml CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2 h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90s, artificial saliva/2h, artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey´s test (p <0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/ml gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.


2005 ◽  
Vol 17 (9) ◽  
pp. 91
Author(s):  
K. M. Banwell ◽  
M. Lane ◽  
D. L. Russell ◽  
K. L. Kind ◽  
J. G. Thompson

Follicular antral oxygen tension is thought to influence subsequent oocyte developmental competence. Despite this, in vitro maturation (IVM) is routinely performed in either 5 or 20% O2 and while low O2 has been shown to be beneficial to embryo development in many species, the effect of altering O2 concentration during IVM has not been adequately investigated. Here we investigated the effects of a range of O2 concentrations during IVM on meiotic maturation and subsequent embryo development after IVF. Ovaries from eCG-stimulated CBA F1 female mice (21 days) were collected and intact cumulus oocyte complexes (COCs) cultured for 17–18 h under 2, 5, 10 or 20% O2 (6% CO2 and balance of N2). Matured COCs were denuded of cumulus cells, fixed and stained (1% aceto-orcein) for visualisation of maturation status. No significant difference in maturation rates between treatment groups was observed. Following IVF (performed under 5% O2, 6% CO2 and balance of N2), no difference in fertilisation rates between treatment groups was observed in a randomly selected cohort 7 h post-fertilisation. There was also no significant difference in cleavage rates after 24 h or ability to reach blastocyst stage after 96 h, with a tendency (P = 0.079) for more blastocysts in 2% O2. However there was a significant increase in the number of trophectoderm cells present in the resulting blastocysts (P < 0.05) in the 2% O2 group (35 ± 2.1) compared to 20% O2 (25 ± 2.8). Our data suggests that O2 concentration during IVM does not influence nuclear maturation or subsequent fertilisation, cleavage and blastocyst development rates. However, maturation in 2% O2 significantly alters subsequent cell lineage within blastocysts to favour trophectoderm development. Such skewed trophectoderm cell number may influence embryo viability. Funded by NHMRC and NIH.


2019 ◽  
Vol 7 (7) ◽  
pp. 1184-1192 ◽  
Author(s):  
Ghada Ezzeldin Elwardani ◽  
Tarek Abdel Hamid Harhash ◽  
Ahmed Abbas Zaky

BACKGROUND: Erosion is a widespread phenomenon with higher predilection in primary dentition. AIM: The aim of the present study is to assess the remineralising effect of Er,Cr:YSGG laser application combined with CPP-ACPF after erosive demineralisation by Coca-Cola in primary teeth. METHODS: Fifty teeth (n = 10) were divided into; Group I: Artificial saliva, (Saliva natural, Medac, UK), Group II: CPP-ACPF (MI Paste Plus, GC Corp, USA), Group III: Er,Cr:YSGG (Waterlase iPlus, USA), Group IV: CPP-ACPF + Er,Cr:YSGG, Group V: Er,Cr:YSGG + CPP-ACPF. Teeth were immersed in Coca-Cola for 10 min, 5 times/day for 5 days. DIAGNOdent (DD) measurements were taken before and after the experiment. RESULTS: There was a significant increase in DD readings after erosive-treatment cycles in all test groups. The highest reading was in samples immersed in artificial saliva, and the lowest was in those subjected to combined CPP-ACPF and Er,Cr:YSGG laser application, regardless of the sequence used. There was no significant difference between samples immersed in artificial saliva, and after CPP-ACPF application. Similarly, there was no significant difference between samples treated by combined treatment of CPP-ACPF and Er,Cr:YSGG application. However, there was a significant difference between samples immersed in artificial saliva or treated with CPP-ACPF application and those subjected to combined treatment CPP-ACPF along with Er,Cr:YSGG. CONCLUSION: Combining Er,Cr:YSGG laser and CPP-ACPF paste significantly increased enamel remineralisation, regardless of the sequence implemented. Saliva naturally and CPP-ACPF application had a comparable effect on remineralisation.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1087
Author(s):  
Yusuke Koshimitsu ◽  
Go Inoue ◽  
Mahmoud Sayed ◽  
Amr Saad ◽  
Masaomi Ikeda ◽  
...  

Background: Enamel mineral density is dependent on a balanced dynamic process of demineralization and remineralization. Objective: We evaluated the remineralization potential of experimental calcium- containing primer (CaP) application on enamel subsurface lesions. Methods: Demineralized enamel samples obtained from bovine incisor teeth were prepared and cut buccolingually. All samples were divided into 4 main groups according to the type of primer: CLEARFIL SE BOND 2 Primer (SEP), experimental calcium-containing primer (CaP) and bond: CLEARFIL SE BOND 2 Bond (SEB), CLEARFIL Protect Bond (PBB) treatment: (1) SEP-SEB (2) SEP-PBB (3) CaP-SEB (4) CaP-PBB. Each group was subdivided according to storage time in artificial saliva: immediately, 1 month and 6 months. Then, the samples were analyzed using transverse micro radiography (TMR). Additionally, the samples treated with each primer were prepared for scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) observation. Two-way ANOVA was used for the statistical analysis of mineral loss (ΔZ: vol%·µm). Results: CaP-PBB had the significantly lowest ΔZ at all storage times, while SEP-SEB had the highest ΔZ (p < 0.05). SEM observations revealed that new crystals were formed on the surface after 6 months, and the ratio of calcium on the enamel increased in the EDS analysis. Conclusion: Experimental calcium-containing primer can provide additional mineral deposition, with even further deposition when combined with a fluoride-containing bond.


2005 ◽  
Vol 16 (2) ◽  
pp. 103-106 ◽  
Author(s):  
Rogério de Oliveira ◽  
Adriana Franco Paes Leme ◽  
Marcelo Giannini

This in vitro study evaluated the surface microhardness of human enamel submitted to bleaching with 10% carbamide peroxide (CP) containing calcium or fluoride. Ninety-eight dental blocks (5 x 5 mm²) with polished enamel surfaces were randomly assigned to 7 treatment groups (n=14), as follows: without bleaching and storage in artificial saliva (control); 10% CP; 10% CP + 0.05% calcium; 10% CP + 0.1% calcium; 10% CP + 0.2% calcium; 10% CP + 0.2% fluoride; and 10% CP + 0.5% fluoride. During 14 days, enamel surfaces were daily exposed to a 6-h bleaching regimen followed by storage in artificial saliva. Surface microhardness was measured before (baseline), during (7th day), immediately after bleaching (14th day) and 1 week post bleaching. Data were analyzed by two-way ANOVA and Tukey's test (p<0.05). All treatments reduced SM significantly during the bleaching cycle (7th day), immediately after bleaching (14th day) and 1 week post bleaching, compared to baseline and to the unbleached control group. In conclusion, in spite of the addition of calcium and fluoride, all bleaching treatments affected the enamel surface microhardness.


2013 ◽  
Vol 70 (3) ◽  
pp. 279-283
Author(s):  
Mirjana Apostolovic ◽  
Biljana Kalicanin ◽  
Marija Igic ◽  
Olivera Trickovic-Janjic ◽  
Dusan Surdilovic ◽  
...  

Bacground/Aim. Glass ionomer cements (GIC) belong to the group of polycarboxyl cements, and one of the principal characteristics of these materials is their anticariogenic potential of fluorine release into saliva and enamel-dentin substance. The aim of this study was to examine the content of released fluorine from GIC restorations (Fuji IX, GC, Japan) of young permanent teeth in the medium of artificial saliva and similar releases in the same medium by the restorations of these teeth treated with a low concentration fluoride solution. Methods. We examined 12 premolars exctracted from orthodontic reasons. The GIC restored teeth were divided into the group treated daily with low concentration fluoride solution (334 ppm) and the control, not treated group. The samples of artificial saliva were analyzed for fluorine ion content using an ion selective electrode. Results. Our comparative analysis of the mean values using the Student?s t-test demonstrated a statistically significant difference in fluorine ion concentration in artificial saliva of fluoridated and non-fluoridated teeth with GIC fillings after 14 and 21 days (p < 0.05), while the difference detected after 7 days was with no statistical significance. Conclusion. The results of this in vitro study indicated that low-concentration fluoride solutions could serve to refluoridate GIC fillings and contribute to an increased fluorine content in saliva. The process of refluoridation of GIC fillings should be advised 2-3 weeks after the restoration, since the release of fluorine from GIC fillings diminishes in time.


2009 ◽  
Vol 53 (6) ◽  
pp. 2382-2391 ◽  
Author(s):  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
William W. Hope ◽  
Joseph Meletiadis ◽  
Diana Mickiene ◽  
...  

ABSTRACT We studied the antifungal activity of anidulafungin (AFG) in combination with voriconazole (VRC) against experimental invasive pulmonary aspergillosis (IPA) in persistently neutropenic rabbits and further explored the in vitro and in vivo correlations by using Bliss independence drug interaction analysis. Treatment groups consisted of those receiving AFG at 5 (AFG5 group) and 10 (AFG10 group) mg/kg of body weight/day, VRC at 10 mg/kg every 8 h (VRC group), AFG5 plus VRC (AFG5+VRC group), and AFG10 plus VRC (AFG10+VRC group) and untreated controls. Survival throughout the study was 60% for the AFG5+VRC group, 50% for the VRC group, 27% for the AFG10+VRC group, 22% for the AFG5 group, 18% for the AFG10 group, and 0% for control rabbits (P < 0.001). There was a significant reduction of organism-mediated pulmonary injury, measured by infarct scores, lung weights, residual fungal burdens, and galactomannan indexes, in AFG5+VRC-treated rabbits versus those treated with AFG5 and VRC alone (P < 0.05). In comparison, AFG10+VRC significantly lowered only infarct scores and lung weights in comparison to those of AFG10-treated animals (P < 0.05). AFG10+VRC showed no significant difference in other outcome variables. Significant Bliss synergy was found in vivo between AFG5 and VRC, with observed effects being 24 to 30% higher than expected levels if the drugs were acting independently. These synergistic interactions were also found between AFG and VRC in vitro. However, for AFG10+VRC, only independence and antagonism were observed among the outcome variables. We concluded that the combination of AFG with VRC in treatment of experimental IPA in persistently neutropenic rabbits was independent to synergistic at a dosage of 5 mg/kg/day but independent to antagonistic at 10 mg/kg/day, as assessed by Bliss independence analysis, suggesting that higher dosages of an echinocandin may be deleterious to the combination.


2018 ◽  
Vol 9 ◽  
pp. 71
Author(s):  
Tjokro Prasetyadi ◽  
Bambang Irawan ◽  
Miesje Karmiati Purwanegara ◽  
Bambang Suharno ◽  
Sugeng Supriadi

Objective: 17-4 precipitation hardening (PH) stainless steel has a low nickel content, which can reduce the risk of allergic reactions. It also has good mechanical properties against the stress caused by the archwire slot brackets in orthodontic treatments. The main focus of this study to evaluate the metal ions released into artificial saliva from different orthodontic brackets with the same 17-4 PH stainless steel and to examine the in vitro cytotoxicity of the metal.Methods: Material properties were analyzed by energy dispersive spectroscopy. The 3-(4,5-dimethylthiazol-2-y1)2,5-diphenyltetrazolium bromide (MTT) assay method was used to examine the cytotoxicity of Gemini and Synergy brackets.Results: The cytotoxicity test on all the orthodontic brackets showed a mean cell viability value above 80% in each immersion group, which means that this material is not cytotoxic to the human immortalized keratinocyte cell line.Conclusions: The results showed cell viability in the extracts of both groups of brackets, and there was no statistically significant difference between the groups (p>0.05).


Sign in / Sign up

Export Citation Format

Share Document