scholarly journals Submarine Active Faults and Morpho-Tectonics Around the Iberian Margins: Seismic and Tsunamis Hazards

2021 ◽  
Vol 9 ◽  
Author(s):  
Luis Somoza ◽  
Teresa Medialdea ◽  
Pedro Terrinha ◽  
Adrià Ramos ◽  
Juan-Tomás Vázquez

The aim of this work is to make a synthesis at regional scale focused on the geophysical characterization of submarine faults around the Iberian margin to identify active structures and analyze their development in the framework of the present plate organization. Most of these submarine faults show seabed morphological expressions mapped with high-resolution swath bathymetry data, high-resolution parametric sub-bottom profiles and multichannel seismic profiles. Present active tectonics, deformation, seismicity, and tsunami-affected coastal areas is mainly focused on south Iberia at the Eurasian and Nubia plate boundary. Submarine active faults in these areas are represented by long strike-slip fault systems and arcuate fold-thrust systems. Their development takes place in response to present NW-SE convergence between the Eurasian and Nubia plates. We propose a strain partitioning model of the plate boundary into simple and pure shear zones to explain the distribution and mechanisms of active submarine faults along the Gulf of Cádiz, Gibraltar Arc and Alborán Sea in response to the present-day shear stress orientation. Nevertheless, deformation is also focused in the NW Iberian margin. Thus, along the Galician and Portuguese margin, several submarine faults mapped as thrust fault systems with high-seismic activity along the Iberian ocean-continent transition reflect the re-activation of former structures. We suggest that submarine active faults in the NW and W Iberia are also the response to the eastwards transfer of short-offset transform faults of the Mid Atlantic Ridge into the oceanic Iberian along a weakness as the former plate boundary between the oceanic Iberia and Eurasia domains. The distribution and activity of submarine faults mapped in this work from geophysical and bathymetric data are in good agreement with geodetic data and focal mechanisms.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nicole Sequeira ◽  
Abhijit Bhattacharya

Abstract Curvilinear steep shear zones originate in different tectonic environments. In the Chottanagpur Gneiss Complex (CGC), the steeply dipping, left-lateral and transpressive Early Neoproterozoic Hundru Falls Shear Zone (HFSZ) with predominantly north-down kinematics comprises two domains, e.g., an arcuate NW-striking (in the west) to W-striking (in the east) domain with gently plunging stretching lineation that curves into a W-striking straight-walled domain with down-dip lineation. The basement-piercing HFSZ truncates a carapace of flat-lying amphibolite facies paraschist and granitoid mylonites, and recumbently folded anatectic gneisses. The carapace—inferred to be a midcrustal regional-scale low-angle detachment zone—structurally overlies an older basement of Early Mesoproterozoic anatectic gneisses intruded by Mid-Mesoproterozoic/Early Neoproterozoic granitoids unaffected by the Early Neoproterozoic extensional tectonics. The mean kinematic vorticity values in the steep HFSZ-hosted granitoids computed using the porphyroclast aspect ratio method are 0.74–0.83 and 0.51–0.65 in domains with shallow and steep lineations, respectively. The granitoid mylonites show a chessboard subgrain microstructure, but lack evidence for suprasolidus deformation. The timing relationship between the two domains is unclear. If the two HFSZ domains were contemporaneous, the domain of steep lineations with greater coaxial strain relative to the curvilinear domain formed due to strain partitioning induced by variations in mineralogy and/or temperature of the cooling granitoid plutons. Alternately, the domain of gently plunging lineations in the HFSZ was a distinct shear zone that curved into a subsequent straight-walled shear zone with steeply plunging lineation due to a northward shift in the convergence direction during deformation contemporaneous with the Early Neoproterozoic accretion of the CGC and the Singhbhum Craton.


2020 ◽  
Vol 59 (4) ◽  
pp. 299-316
Author(s):  
Mohamad Khir Abdul-Wahed ◽  
Mohammed ALISSA

Northwestern Syria is a key area in the eastern Mediterranean to study the active tectonics and stress pattern across the Arabia-Eurasia convergent plate boundary. This study aims to outline the present-day stress regime in this region of Syria using the fault plane solutions of the largest events recorded by the Syrian National Seismological Network from 1995 to 2011. A dataset of fault-plane solutions was obtained for 48 events having at least 5 P-wave polarities. The tectonic regime for most of these events is extensional and produces normal mechanisms in agreement with the local configurations of the seismogenic faults in the region. Strike-slip mechanisms are more scarce and restricted to certain areas, such as the northern extension of the Dead Sea fault system. The results of the current study reveal the spatial variations of SHmax orientation across the northwestern Syria region. This spatial variation of the present-day stress field highlights the role of main geometrically complex shear zones in the present-day stress pattern of northwestern Syria. However, these results show, regardless of the relatively small magnitudes of the studied events, they provide a picture of the local stress deviations that have currently been taking place along the local active faults.


2018 ◽  
Vol 10 (8) ◽  
pp. 1296 ◽  
Author(s):  
Mohammad Sayab ◽  
Domingo Aerden ◽  
Markku Paananen ◽  
Petri Saarela

Unmanned aerial vehicles (UAVs) are rapidly growing remote sensing platforms for capturing high-resolution images of exposed rock surfaces. We used a DJI Phantom 3 Professional (P3P) quadcopter to capture aerial images that were used to generate a high-resolution three-dimensional (3-D) model of the Jokisivu open-pit gold deposit that is located in southwestern Finland. 158 overlapping oblique and nadir images were taken and processed with Agisoft Photoscan Pro to generate textured 3-D surface models. In addition, 69 overlapping images were taken from the steep faces of the open pit. We assessed the precision of the 3-D model by deploying ground control points (GCPs) and the average errors were found minimal along X (2.0 cm), Y (1.2 cm), and Z (5.0 cm) axes. The steep faces of the open pit were used for virtual structural measurements and kinematic analyses in CloudCompare and ArcGIS to distinguish the orientation of different fracture sets and statistical categorization, respectively. Three distinct fracture sets were observed. The NW-SE and NE-SW striking fractures form a conjugate geometry, whereas the NNW-SSE striking fractures cut the conjugate fracture set. The orientation of conjugate fractures match well with the resource model of the deposit and NW- and NE-trending segments of regional-scale anastomosing shear zones. Based on the conjugate geometry of fracture sets I and II, and the regional pattern of anastomosing shear system lead us to interpret an origin of gold mineralization in two stages. An early N-S or NNW-SSE crustal shortening, corresponding to the regional D4 (ca. 1.83–1.81 Ga) or pre-D4 (ca. 1.87–1.86 Ga) Svecofennian tectonic event(s) that produced anastomosing shear zones. Subsequent E-W directed D5 contraction (ca. 1.79–1.77 Ga) partly reactivated the anastomosing shear zones with the formation of conjugate system, which controlled the migration of fluids and gold mineralization in SW Finland.


2018 ◽  
Vol 55 (1) ◽  
pp. 157-165
Author(s):  
Kumar Timalsina ◽  
Kabi Raj Paudyal

The Lesser Himalaya is a fold-thrust belt in the Himalaya. In the Nepal Himalaya, several active faults, among which the Badi Gad Fault is one of them, are identified and mapped by many researchers in the past, However, very less study has been carried out on the existence of this fault and its extension. In the present study, an attempt was made to assess the fault and to map its extension in the region based on the geological as well as geomorphological criteria. For this purpose, a detailed geological map was prepared from Ridi to the Shantipur area in 1:25,000 scales. During the field work, several geological as well as geomorphic evidences of the existence of active fault were found, and some of them are also found under the aerial photo observation. These evidences include the presence of shear zones, clustering of large and several landslides along a confined linear zone, river course diversion, terrace tilting, fault scarps etc. In the present work, the Badi Gad Fault is traced out continuously from the Ridi to the Shantipur area and even extended far to the NW direction under aerial photo. The fault follows the moderate hills of the left bank of the present course of the Badi Gad River. Major shear zones found in the region are the Tal Khola, Aslewa, Eksingaun, Juhan, Gultung, and the Rupakot shear zones. These shear zones are represented by the wide zone of fault gauge, fault breccias, silickensides, striations and large landslides. Besides, other geomorphic evidences traced out are location of spring lines, tilted river terraces in Pul Camp and Wamitaksar area, river course diversion of the Lumdi Khola and fault scarp at Bhanjyangaun of Aslewa. Such types of fault-controlled geomorphic features are also found from the Rudrabeni-Wamitaksar areas under the aerial photos. Based on the fault controlled geomorphological study in the field and aerial photos interpretation, an attempt was made to map the Badi Gad Fault, an active strike slip fault in the region.


Geosphere ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1312-1335
Author(s):  
Maureen A.L. Walton ◽  
Daniel S. Brothers ◽  
James E. Conrad ◽  
Katherine L. Maier ◽  
Emily C. Roland ◽  
...  

Abstract Catalina Basin, located within the southern California Inner Continental Borderland (ICB), United States, is traversed by two active submerged fault systems that are part of the broader North America–Pacific plate boundary: the San Clemente fault (along with a prominent splay, the Kimki fault) and the Catalina fault. Previous studies have suggested that the San Clemente fault (SCF) may be accommodating up to half of the ∼8 mm/yr right-lateral slip distributed across the ICB between San Clemente Island and the mainland coast, and that the Catalina fault (CF) acts as a significant restraining bend in the larger transform system. Here, we provide new high-resolution geophysical constraints on the seabed morphology, deformation history, and kinematics of the active faults in and on the margins of Catalina Basin. We significantly revise SCF mapping and describe a discrete releasing bend that corresponds with lows in gravity and magnetic anomalies, as well as a connection between the SCF and the Santa Cruz fault to the north. Subsurface seismic-reflection data show evidence for a vertical SCF with significant lateral offsets, while the CF exhibits lesser cumulative deformation with a vertical component indicated by folding adjacent to the CF. Geodetic data are consistent with SCF right-lateral slip rates as high as ∼3.6 mm/yr and transpressional convergence of <1.5 mm/yr accommodated along the CF. The Quaternary strands of the SCF and CF consistently cut across Miocene and Pliocene structures, suggesting generation of basin and ridge morphology in a previous tectonic environment that has been overprinted by Quaternary transpression. Some inherited crustal fabrics, especially thinned crust and localized, relatively hard crustal blocks, appear to have had a strong influence on the geometry of the main trace of the SCF, whereas inherited faults and other structures (e.g., the Catalina Ridge) appear to have minimal influence on the geometry of active faults in the ICB.


1984 ◽  
Vol 75 (2) ◽  
pp. 113-133 ◽  
Author(s):  
Gordon B. Curry ◽  
B. J. Bluck ◽  
C. J. Burton ◽  
J. K. Ingham ◽  
David J. Siveter ◽  
...  

I. ABSTRACT: Research interest in the Highland Border Complex has been pursued sporadically during the past 150 years. The results and conclusions have emphasised the problems of dealing with a lithologically disparate association which crops out in isolated, fault-bounded slivers along the line of the Highland Boundary fault. For much of the present century, the debate has centred on whether the rocks of the complex have affinities with the Dalradian Supergroup to the N, or are a discrete group. Recent fossil discoveries in a wide variety of Highland Border rocks have confirmed that many are of Ordovician age, and hence cannot have been involved in at least the early Grampian deformational events (now accurately dated as pre-Ordovician) which affect the Dalradian Supergroup. Such palaeontological discoveries form the basis for a viable biostratigraphical synthesis. On a regional scale, it is apparent that the geological history of the Highland Border rocks must be viewed in the context of plate boundary tectonism along the entire northwestern margin of Iapetus during Palaeozoic times.II. ABSTRACT: Silicified articulate brachiopods from the Lower Ordovician (Arenig) Dounans Limestone are extremely rare but the stratigraphically diagnostic generaArchaeorthisSchuchert and Cooper, andOrthidiumHall and Clarke, have been identified. In addition, three specimens with characteristic syntrophiid morphology have been recovered. Inarticulate brachiopods are known from Stonehaven and Bofrishlie Burn near Aberfoyle, and have also been previously recorded from Arran.III. ABSTRACT: Micropalaeontological investigation of the Highland Border Complex has produced a range of microfossils including chitinozoans, coleolids, calcispheres and other more enigmatic objects. The stratigraphical ranges of the species lie almost entirely within the Ordovician and reveal a scatter of ages for different lithologies from the Arenig through to the Caradoc or Ashgill, with a pronounced erosional break between the Llandeilo and the Caradoc.IV. ABSTRACT: A Lower Ordovician (Arenig Series) silicified ostracode fauna from the Highland Border Dounans Limestone at Lime Craig Quarry, Aberfoyle, Central Scotland, represents the earliest record of this group of Crustacea from the British part of the early Palaeozoic ‘North American’ plate.V. ABSTRACT: Palaeontological age determinations for a variety of Highland Border rocks are presented. The data are based on the results of recent prospecting which has demonstrated that macro- and microfossils are present in a much greater range of Highland Border lithologies than previously realised. Data from other studies are also incorporated, as are modern taxonomie re-assessments of older palaeontological discoveries, in a comprehensive survey of Highland Border biostratigraphy. These accumulated data demonstrate that all fossiliferous Highland Border rocks so far discovered are of Ordovician age, with the exception of the Lower Cambrian Leny Limestone.VI. ABSTRACT: The Highland Border Complex consists of at least four rock assemblages: a serpentinite and possibly other ophiolitic rocks of Early or pre-Arenig age; a sequence of limestones and conglomerates of Early Arenig age; a succession of dark shales, cherts, quartz wackes, basic lavas and associated volcanogenic sediments of Llanvirn and ? earlier age; and an assemblage of limestones, breccias, conglomerates and arenites with subordinate shales of Caradoc or Ashgill age. At least three assemblages are divided by unconformities and in theirmost general aspect have similarities with coeval rocks in western Ireland.The Highland Border Complex probably formed N of the Midland Valley arc massif in a marginal sea comparable with the Sunda shelf adjacent to Sumatra–Java. Strike-slip and thrust emplacement of the whole Complex in at least four episodes followed the probable generation of all or part of its rocks by pull-apart mechanisms.


1989 ◽  
Vol 20 (2) ◽  
pp. 99 ◽  
Author(s):  
S.S. Webster ◽  
R.W. Henley

High resolution airborne geophysical data over broad areas have been found to optimize exploration for epithermal gold deposits in differing geological environments.Genetic exploration models may be tested in favourable sites by the recognition of geophysical signatures. These signatures reflect structural, lithological and alteration patterns arising from controls on ore deposits and can be applied at regional or detailed scales, using the same data set.At regional scale (e.g. 1:100,000) the magnetic data reflect the regional tectonics and divide the area into domains for the application of appropriate genetic models. At prospect scale (e.g. 1:25,000) the radiometric data allow the extrapolation of poorly outcropping geology to provide a cost-effective mapping technique. The magnetic data can be used to supplement this interpretation or can be used to target deeper sources for direct investigation by drilling.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 139
Author(s):  
Giancarlo Molli ◽  
Isabelle Manighetti ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
...  

Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.


2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

<p>Initially described in the late 50’s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.</p><p>We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.</p><p>Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.</p><p>Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document