scholarly journals Crustal Structure of the Seismogenic Volume of the 2010–2014 Pollino (Italy) Seismic Sequence From 3D P- and S-Wave Tomographic Images

2021 ◽  
Vol 9 ◽  
Author(s):  
Ferdinando Napolitano ◽  
Ortensia Amoroso ◽  
Mario La Rocca ◽  
Anna Gervasi ◽  
Simona Gabrielli ◽  
...  

A tomographic analysis of Mt. Pollino area (Italy) has been performed using earthquakes recorded in the area during an intense seismic sequence that occurred between 2010 and 2014. 870 local earthquakes with magnitude ranging from 1.8 to 5.0 were selected considering the number of recording stations, the signal quality, and the hypocenter distribution. P- and S-wave arrival times were manually picked and used to compute 3D velocity models through tomographic seismic inversion. The resulting 3D distributions of VP and VS are characterized by high resolution in the central part of the investigated area and from surface to about 10 km below sea level. The aim of the work is to obtain high-quality tomographic images to correlate with the main lithological units that characterize the study area. The results will be important to enhance the seismic hazard assessment of this complex tectonic region. These images show the ductile Apennine platform (VP = 5.3 km/s) overlaying the brittle Apulian platform (VP = 6.0 km/s) at depth of around 5 km. The central sector of the area shows a clear fold and thrust interface. Along this structure, most of the seismicity occurred, including the strongest event of the sequence (MW 5.0). High VP (>6.8 km/s) and high VP/VS (>1.9) patterns, intersecting the southern edge of this western seismogenic volume, have been interpreted as water saturated rocks, in agreement with similar geological context in the Apennines. These fluids could have played a role in nucleation and development of the seismic sequence. A recent study revealed the occurrence of clusters of earthquakes with similar waveforms along the same seismogenic volume. The hypocenters of these cluster events have been compared with the events re-located in this work. Jointly, they depict a 10 km × 4 km fault plane, NW-SE oriented, deepening towards SW with a dip angle of 40–45°. Instead, the volume of seismicity responsible for the ML 4.3 earthquake developed as a mainshock-aftershock sequence, occurring entirely within the average-to-low VP/VS Apennine platform. Our results agree with other independent geophysical analyses carried out in this area, and they could significantly improve the actual knowledge of the main lithologic units of this complex tectonic area.

2020 ◽  
Author(s):  
Xiaoyu Guan ◽  
Yuanze Zhou ◽  
Takashi Furumura

<p>Fitting subduction zone guided waves with synthetics is an ideal choice for studying the velocity structure of the oceanic crust. After an earthquake occurs in subduction zones, seismic waves can be trapped in the low-velocity oceanic crust and propagated as guided waves. The arrival time and frequency characteristics of the guided waves can be used to image the velocity structure of the oceanic crust. The analysis and modeling based on guided wave observations provide a rare opportunity to understand the velocity structure of the oceanic crust and the variations in oceanic crustal materials during the subduction process.</p><p>High-frequency guided waves have been observed in the subduction zone of eastern Alaska. On several sections, observed seismograms recorded by seismic stations show low-frequency (<2Hz) onsets ahead of the main high-frequency (>2Hz) guided waves. Differences in the arrival times and dispersion characteristics of seismic phases are related to the velocity structure of the oceanic crust, and the characteristics of coda waves are related to the distribution of elongated scatters in the oceanic crust. Through fitting the observed broadband waveforms and synthetics modeled with the 2-D FDM (Finite Difference Method), we obtain the preferred oceanic crustal velocity models for several sections in the subduction zone of eastern Alaska. The preferred models can explain the seismic phase arrival times, dispersions, and coda characteristics in the observed waveforms. With the obtained P- and S- wave models of velocity structures on several sections, the material compositions they represent are deduced, and the variations of oceanic crustal materials during subducting can be understood. This provides new evidence for studying the details of the subduction process in the subduction zone of eastern Alaska.</p>


2018 ◽  
Vol 40 (3) ◽  
pp. 1091
Author(s):  
Ch. K. Karamanos ◽  
G. V. Karakostas ◽  
E. E. Papadimitriou ◽  
M. Sachpazi

The area of North Aegean Trough exhibits complex tectonic characteristics as a consequence of the presence of complicated active structures. Exploitation of accurately determined earthquake data considerably contributes in the investigation of these structures and such accuracy is seeking through certain procedures. The determination of focal parameters of earthquakes that occurred in this area during 1964-2003 was performed by collecting all the available data for Ρ and S arrivals. After selecting the best solutions from an initial hypocentral location, 739 earthquakes were found that fulfilled certain criteria for the accuracy and used for further processing. The study area was divided in 16 sub regions and by the use of the HYPOINVERSE computer program, the travel time curves were constructed, and were used to define the velocity models for each one of them. For each sub region the time delays were calculated and used as time corrections in the arrival times of the seismic waves. The Vp/Vs ratio, necessary for S—wave velocity models, was calculated with two different methods and was found equal to 1.76. The velocity models and the time delays were used to relocate the events of the whole data set. The relocation resulted in significant improvement of the accuracy in the focal parameters determination.


1991 ◽  
Vol 81 (5) ◽  
pp. 1705-1725
Author(s):  
Susan Y. Schwartz ◽  
Glenn D. Nelson

Abstract Aftershocks of the 18 October 1989 Loma Prieta, California, earthquake are located using S-P arrival-time measurements from stations of the PASSCAL aftershock deployment. We demonstrate the effectiveness of using S-P arrival-time data in locating earthquakes recorded by a sparse three-component network. Events are located using the program QUAKE3D (Nelson and Vidale, 1990) with both 2-D and 3-D velocity models that have been developed independently for this region. The dense coverage of the area around the Loma Prieta rupture zone by instruments of the California Network (CALNET) has allowed the U.S. Geological Survey (USGS) to find P-wave earthquake locations for both velocity models, which we compare with our solutions. We also perform synthetic calculations to estimate realistic location errors resulting from uncertainties in both the 3-D velocity structure and the timing of arrivals. These calculations provide a comparison of location accuracies obtained using S-P arrival times, S and P arrival times, and P times alone. We estimate average absolute errors in epicentral location and in depth for the Loma Prieta aftershocks to be just under 2 km and 1 km, respectively, using S-P phase data and the sparse PASSCAL instrument coverage. The synthetic tests show that these errors are much smaller than those predicted using P-wave data alone and are nearly the same as those predicted using S- and P-phase data separately. This suggests that future aftershock recording deployments with sparse networks of three-component data can retrieve accurate event locations even if absolute timing is problematic. We find moderate differences between our locations and those determined by the USGS from a larger network of stations; however, common characteristics in both seismicity patterns are apparent. Neither set of locations yields earthquake patterns that can be easily interpreted in terms of simple faulting geometries. The absence of a simple pattern in both sets of earthquake locations indicates that this complexity is not the result of earthquake mislocation but is a genuine feature of the seismicity. A deep southwesterly dipping plane and a near-vertical fault extending from the surface to at least 7-km depth beneath the surface trace of the San Andreas Fault are imaged by both sets of earthquake locations. Although earthquake locations indicate the existence of many more fault segments, the complexity of this region requires that a definitive picture of the faulting geometry will have to await improvement in our knowledge of the P- and S-wave velocity structures.


2021 ◽  
Author(s):  
Francesca D’Ajello Caracciolo ◽  
Rodolfo Console

AbstractA set of four magnitude Ml ≥ 3.0 earthquakes including the magnitude Ml = 3.7 mainshock of the seismic sequence hitting the Lake Constance, Southern Germany, area in July–August 2019 was studied by means of bulletin and waveform data collected from 86 seismic stations of the Central Europe-Alpine region. The first single-event locations obtained using a uniform 1-D velocity model, and both fixed and free depths, showed residuals of the order of up ± 2.0 s, systematically affecting stations located in different areas of the study region. Namely, German stations to the northeast of the epicenters and French stations to the west exhibit negative residuals, while Italian stations located to the southeast are characterized by similarly large positive residuals. As a consequence, the epicentral coordinates were affected by a significant bias of the order of 4–5 km to the NNE. The locations were repeated applying a method that uses different velocity models for three groups of stations situated in different geological environments, obtaining more accurate locations. Moreover, the application of two methods of relative locations and joint hypocentral determination, without improving the absolute location of the master event, has shown that the sources of the four considered events are separated by distances of the order of one km both in horizontal coordinates and in depths. A particular attention has been paid to the geographical positions of the seismic stations used in the locations and their relationship with the known crustal features, such as the Moho depth and velocity anomalies in the studied region. Significant correlations between the observed travel time residuals and the crustal structure were obtained.


Author(s):  
Hao Wang ◽  
Ning Li ◽  
Caizhi Wang ◽  
Hongliang Wu ◽  
Peng Liu ◽  
...  

Abstract In the process of dipole-source acoustic far-detection logging, the azimuth of the fracture outside the borehole can be determined with the assumption that the SH–SH wave is stronger than the SV–SV wave. However, in slow formations, the considerable borehole modulation highly complicates the dipole-source radiation of SH and SV waves. A 3D finite-difference time-domain method is used to investigate the responses of the dipole-source reflected shear wave (S–S) in slow formations and explain the relationships between the azimuth characteristics of the S–S wave and the source–receiver offset and the dip angle of the fracture outside the borehole. Results indicate that the SH–SH and SV–SV waves cannot be effectively distinguished by amplitude at some offset ranges under low- and high-fracture dip angle conditions, and the offset ranges are related to formation properties and fracture dip angle. In these cases, the fracture azimuth determined by the amplitude of the S–S wave not only has a $180^\circ $ uncertainty but may also have a $90^\circ $ difference from the actual value. Under these situations, the P–P, S–P and S–S waves can be combined to solve the problem of the $90^\circ $ difference in the azimuth determination of fractures outside the borehole, especially for a low-dip-angle fracture.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S569-S577 ◽  
Author(s):  
Yang Zhao ◽  
Houzhu Zhang ◽  
Jidong Yang ◽  
Tong Fei

Using the two-way elastic-wave equation, elastic reverse time migration (ERTM) is superior to acoustic RTM because ERTM can handle mode conversions and S-wave propagations in complex realistic subsurface. However, ERTM results may not only contain classical backscattering noises, but they may also suffer from false images associated with primary P- and S-wave reflections along their nonphysical paths. These false images are produced by specific wave paths in migration velocity models in the presence of sharp interfaces or strong velocity contrasts. We have addressed these issues explicitly by introducing a primary noise removal strategy into ERTM, in which the up- and downgoing waves are efficiently separated from the pure-mode vector P- and S-wavefields during source- and receiver-side wavefield extrapolation. Specifically, we investigate a new method of vector wavefield decomposition, which allows us to produce the same phases and amplitudes for the separated P- and S-wavefields as those of the input elastic wavefields. A complex function involved with the Hilbert transform is used in up- and downgoing wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots that is required by the conventional wavefield separation technique. A modified dot-product imaging condition is proposed to produce multicomponent PP-, PS-, SP-, and SS-images. We apply our imaging condition to two synthetic models, and we demonstrate the improvement on the image quality of ERTM.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B41-B57 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Microseismicity is recorded during an underground mine development by a network of seven boreholes. After an initial preprocessing, 488 events are identified with a minimum of 12 P-wave arrival-time picks per event. We have developed a three-step approach for P-wave passive seismic tomography: (1) a probabilistic grid search algorithm for locating the events, (2) joint inversion for a 1D velocity model and event locations using absolute arrival times, and (3) double-difference tomography using reliable differential arrival times obtained from waveform crosscorrelation. The originally diffusive microseismic-event cloud tightens after tomography between depths of 0.45 and 0.5 km toward the center of the tunnel network. The geometry of the event clusters suggests occurrence on a planar geologic fault. The best-fitting plane has a strike of 164.7° north and dip angle of 55.0° toward the west. The study region has known faults striking in the north-northwest–south-southeast direction with a dip angle of 60°, but the relocated event clusters do not fall along any mapped fault. Based on the cluster geometry and the waveform similarity, we hypothesize that the microseismic events occur due to slips along an unmapped fault facilitated by the mining activity. The 3D velocity model we obtained from double-difference tomography indicates lateral velocity contrasts between depths of 0.4 and 0.5 km. We interpret the lateral velocity contrasts in terms of the altered rock types due to ore deposition. The known geotechnical zones in the mine indicate a good correlation with the inverted velocities. Thus, we conclude that passive seismic tomography using microseismic data could provide information beyond the excavation damaged zones and can act as an effective tool to complement geotechnical evaluations.


2019 ◽  
Vol 23 (2) ◽  
pp. 147-155
Author(s):  
Vishwa Joshi

The physiographic features of Gujarat state of western India are unique, as they behaved dynamically with several alterations and modifications throughout the geological timescale. It displays a remarkable example of a terrain bestowed with geological, physiographical and climatic diversities. The massive 2001 Bhuj earthquake (M 7.7) over the Kachchh region caused severe damage and devastation to the state of Gujarat and attracted the scientific community of the world to comprehend on its structure and tectonics for future hazard reduction. In the present study, three clusters of wave paths A, B1, and B2 have considered. In each cluster, dispersion data were measured station by station which collectively formed a dispersion data file for a nonlinear inversion through Genetic algorithm. In this way, three crustal velocity models were generated for entire Gujarat. These models are 1) Across Cambay Basin (Path A), 2) Along Saurashtra - Kathiawar Horst (Path B1) and 3) Along Narmada Basin (Path B2), which were formed at different times during the Mesozoic. The average thickness of the crust estimated in the present study for paths A, B1 and B2 are 38.2 km, 36.2 km, and 41.6 km respectively and the estimated S-wave velocity in the lower crust is ~ 3.9 km/s for all the paths. The present study will improve our knowledge about the structure of the seismogenic layer of this active intraplate region 


2017 ◽  
Author(s):  
Valentina Socco ◽  
Farbod Khosro Anjom ◽  
Cesare Comina ◽  
Daniela Teodor

1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document