scholarly journals GLP-2 Is Locally Produced From Human Islets and Balances Inflammation Through an Inter-Islet-Immune Cell Crosstalk

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei He ◽  
Osmond D. Rebello ◽  
Antonia Henne ◽  
Fabian Nikolka ◽  
Thomas Klein ◽  
...  

Glucagon-like peptide-1 (GLP-1) shows robust protective effects on β-cell survival and function and GLP-1 based therapies are successfully applied for type-2 diabetes (T2D) and obesity. Another cleavage product of pro-glucagon, Glucagon-like peptide-2 (GLP-2; both GLP-1 and GLP-2 are inactivated by DPP-4) has received little attention in its action inside pancreatic islets. In this study, we investigated GLP-2 production, GLP-2 receptor (GLP-2R) expression and the effect of GLP-2R activation in human islets. Isolated human islets from non-diabetic donors were exposed to diabetogenic conditions: high glucose, palmitate, cytokine mix (IL-1β/IFN-γ) or Lipopolysaccharide (LPS) in the presence or absence of the DPP4-inhibitor linagliptin, the TLR4 inhibitor TAK-242, the GLP-2R agonist teduglutide and/or its antagonist GLP-2(3-33). Human islets under control conditions secreted active GLP-2 (full-length, non-cleaved by DPP4) into the culture media, which was increased by combined high glucose/palmitate, the cytokine mix and LPS and highly potentiated by linagliptin. Low but reproducible GLP-2R mRNA expression was found in all analyzed human islet isolations from 10 donors, which was reduced by pro-inflammatory stimuli: the cytokine mix and LPS. GLP-2R activation by teduglutide neither affected acute or glucose stimulated insulin secretion nor insulin content. Also, teduglutide had no effect on high glucose/palmitate- or LPS-induced dysfunction in cultured human islets but dampened LPS-induced macrophage-dependent IL1B and IL10 expression, while its antagonist GLP-2(3-33) abolished such reduction. In contrast, the expression of islet macrophage-independent cytokines IL6, IL8 and TNF was not affected by teduglutide. Medium conditioned by teduglutide-exposed human islets attenuated M1-like polarization of human monocyte-derived macrophages, evidenced by a lower mRNA expression of pro-inflammatory cytokines, compared to vehicle treated islets, and a reduced production of itaconate and succinate, marker metabolites of pro-inflammatory macrophages. Our results reveal intra-islet production of GLP-2 and GLP-2R expression in human islets. Despite no impact on β-cell function, local GLP-2R activation reduced islet inflammation which might be mediated by a crosstalk between endocrine cells and macrophages.

2011 ◽  
Vol 211 (1) ◽  
pp. 99-106 ◽  
Author(s):  
N M Whalley ◽  
L E Pritchard ◽  
D M Smith ◽  
A White

Proglucagon is cleaved to glucagon by prohormone convertase 2 (PC2) in pancreatic α-cells, but is cleaved to glucagon-like peptide-1 (GLP-1) by PC1 in intestinal L-cells. The aim of this study was to identify mechanisms which switch processing of proglucagon to generate GLP-1 in the pancreas, given that GLP-1 can increase insulin secretion and β-cell mass. The α-cell line, αTC1-6, expressed PC1 at low levels and GLP-1 was detected in cells and in culture media. GLP-1 was also found in isolated human islets and in rat islets cultured for 7 days. High glucose concentrations increasedPc1gene expression and PC1 protein in rat islets. High glucose (25 mM) also increased GLP-1 but decreased glucagon secretion from αTC1-6 cells suggesting a switch in processing to favour GLP-1. Three G protein-coupled receptors, GPR120, TGR5 and GPR119, implicated in the release of GLP-1 from L-cells are expressed in αTC1-6 cells. Incubation of these cells with an agonist of TGR5 increased PC1 promoter activity and GLP-1 secretion suggesting that this is a mechanism for switching processing to GLP-1 in the pancreas. Treatment of isolated rat islets with streptozotocin caused β-cell toxicity as evidenced by decreased glucose-stimulated insulin secretion. This increased GLP-1 but not glucagon in the islets. In summary, proglucagon can be processed to GLP-1 in pancreatic cells. This process is upregulated by elevated glucose, activation of TGR5 and β-cell destruction. Understanding this phenomenon may lead to advances in therapies to protect β-cell mass, and thereby slow progression from insulin resistance to type 2 diabetes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinyoung Kim ◽  
Kihyoun Park ◽  
Min Jung Kim ◽  
Hyejin Lim ◽  
Kook Hwan Kim ◽  
...  

AbstractWe have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived β-cells (hiPSC-β-cells) and diminishes oligomer-mediated apoptosis of β-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated β-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and β-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and β-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated β-cell death and the development of diabetes are also significantly reduced by β-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation.


2021 ◽  
Vol 22 (15) ◽  
pp. 7917
Author(s):  
Hideaki Kaneto ◽  
Tomohiko Kimura ◽  
Masashi Shimoda ◽  
Atsushi Obata ◽  
Junpei Sanada ◽  
...  

Fundamental pancreatic β-cell function is to produce and secrete insulin in response to blood glucose levels. However, when β-cells are chronically exposed to hyperglycemia in type 2 diabetes mellitus (T2DM), insulin biosynthesis and secretion are decreased together with reduced expression of insulin transcription factors. Glucagon-like peptide-1 (GLP-1) plays a crucial role in pancreatic β-cells; GLP-1 binds to the GLP-1 receptor (GLP-1R) in the β-cell membrane and thereby enhances insulin secretion, suppresses apoptotic cell death and increase proliferation of β-cells. However, GLP-1R expression in β-cells is reduced under diabetic conditions and thus the GLP-1R activator (GLP-1RA) shows more favorable effects on β-cells at an early stage of T2DM compared to an advanced stage. On the other hand, it has been drawing much attention to the idea that GLP-1 signaling is important in arterial cells; GLP-1 increases nitric oxide, which leads to facilitation of vascular relaxation and suppression of arteriosclerosis. However, GLP-1R expression in arterial cells is also reduced under diabetic conditions and thus GLP-1RA shows more protective effects on arteriosclerosis at an early stage of T2DM. Furthermore, it has been reported recently that administration of GLP-1RA leads to the reduction of cardiovascular events in various large-scale clinical trials. Therefore, we think that it would be better to start GLP-1RA at an early stage of T2DM for the prevention of arteriosclerosis and protection of β-cells against glucose toxicity in routine medical care.


1985 ◽  
Vol 68 (5) ◽  
pp. 567-572 ◽  
Author(s):  
C. J. Rhodes ◽  
I. L. Campbell ◽  
T. M. Szopa ◽  
T. J. Biden ◽  
P. D. Reynolds ◽  
...  

1. β-Cell function in human islets derived from a number of kidney donors was investigated by using various types of islet preparations. 2. With fresh islets, both insulin release and biosynthesis were increased by raising glucose concentrations, although the response was a variable one. 3. In fresh islets, the effects of 5 mmol of glucose/l on release were potentiated by 10 mmol of d-3-hydroxybutyrate/l. 4. Insulin release at 20 mmol of glucose/l was inhibited by adrenaline (0.1 mmol/l), and potentiated by theophylline (10 mmol/l) in the presence of 5 mmol of glucose/l, in islets cultured for 4 days. 5. After culture for 8 days, islets still showed an increase in insulin release and biosynthesis in response to glucose. 6. Pancreas slices derived from fresh human tissue also responded to increasing concentrations of glucose with a sigmoidal curve for insulin release.


Author(s):  
Bas Brouwers ◽  
Ilaria Coppola ◽  
Katlijn Vints ◽  
Bastian Dislich ◽  
Nathalie Jouvet ◽  
...  

AbstractFurin is a proprotein convertase (PC) responsible for proteolytic activation of a wide array of precursor proteins within the secretory pathway. It maps to the PRC1 locus, a type 2 diabetes susceptibility locus, yet its specific role in pancreatic β cells is largely unknown. The aim of this study was to determine the role of furin in glucose homeostasis. We show that furin is highly expressed in human islets, while PCs that potentially could provide redundancy are expressed at considerably lower levels. β cell-specific furin knockout (βfurKO) mice are glucose intolerant, due to smaller islets with lower insulin content and abnormal dense core secretory granule morphology. RNA expression analysis and differential proteomics on βfurKO islets revealed activation of Activating Transcription Factor 4 (ATF4), which was mediated by mammalian target of rapamycin C1 (mTORC1). βfurKO cells show impaired cleavage of the essential V-ATPase subunit Ac45, and by blocking this pump in β cells the mTORC1 pathway is activated. Furthermore, βfurKO cells show lack of insulin receptor cleavage and impaired response to insulin. Taken together, these results suggest a model of mTORC1-ATF4 hyperactivation in β cells lacking furin, which causes β cell dysfunction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hyeogsun Kwon ◽  
David R. Hall ◽  
Ryan C. Smith

Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating immune and inflammatory processes across metazoans. This includes the function of prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their immunological actions. In insects, prostaglandins have been implicated in the regulation of both cellular and humoral immune responses, yet in arthropods of medical importance, studies have been limited. Here, we describe a prostaglandin E2 receptor (AgPGE2R) in the mosquito Anopheles gambiae and demonstrate that its expression is most abundant in oenocytoid immune cell populations. Through the administration of prostaglandin E2 (PGE2) and AgPGE2R-silencing, we demonstrate that prostaglandin E2 signaling regulates a subset of prophenoloxidases (PPOs) and antimicrobial peptides (AMPs) that are strongly expressed in populations of oenocytoids. We demonstrate that PGE2 signaling via the AgPGE2R significantly limits both bacterial replication and Plasmodium oocyst survival. Additional experiments establish that PGE2 treatment increases phenoloxidase (PO) activity through the increased expression of PPO1 and PPO3, genes essential to anti-Plasmodium immune responses that promote oocyst killing. We also provide evidence that the mechanisms of PGE2 signaling are concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis, negating the protective effects of lower concentrations of PGE2 on anti-Plasmodium immunity. Taken together, our results provide new insights into the role of PGE2 signaling on immune cell function and its contributions to mosquito innate immunity that promote pathogen killing.


2018 ◽  
Vol 11 ◽  
pp. 205-211 ◽  
Author(s):  
Hua V. Lin ◽  
Jingru Wang ◽  
Jie Wang ◽  
Weiji Li ◽  
Xuesong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document