scholarly journals Thermoxylanolytic and Thermosaccharolytic Potential of a Heat Adapted Bacterial Consortium Developed From Goat Rumen Contents

2021 ◽  
Vol 9 ◽  
Author(s):  
Khusboo Lepcha ◽  
Arijita Basak ◽  
Subham Kanoo ◽  
Prayatna Sharma ◽  
Puja BK ◽  
...  

Thermoactive xylanases have important applications in the industrial deconstruction of lignocellulosic plant biomass, due to their sustained activity even at high temperature conditions of industrial bioreactors. We herein report the development of a thermoactive xylanolytic microbial consortium from the semi-digested contents of goat rumen and characterization of the xylanolytic enzyme cocktail produced by it. The consortium exhibited maximum endoxylanase activity at pH6 and at 60°C. Zymogram analysis revealed the production of multiple xylanases. The xylanase cocktail was stable over a pH range of 5–9 after pre-incubation for 3 h. It retained 74% activity after pre-incubation (60°C) for 50 min. It’s activity was enhanced in presence of β-mercaptoethanol, NH4+, Mg2⁺ and Ca2⁺, whereas Hg2⁺ had an inhibitory effect. The xylanolytic cocktail was further utilized for the saccharification of alkali pre-treated rice straw and mushroom spent rice straw. Saccharification was studied quantitatively using the dinitrosalicylic acid method and qualitatively using scanning electron microscopy. Results indicated the potential of the xylanolytic cocktail for the saccharification of rice straw and highlighted the significance of chemical and/or biological pre-treatment in improving the accessibility of the substrate towards the xylanase cocktail.

2010 ◽  
Vol 53 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Arlem Nascimento de Oliveira ◽  
Luiz Antonio de Oliveira ◽  
Jerusa Souza Andrade

Amylase production and partial characterization of crude enzyme preparations from two rhizobia strains (R-926 and R-991) were evaluated. For both the strains, maximal amylase activities were achieved during the early-to-mid- exponential growth phase; both were active over a pH range from 4.5 to 8.5 and temperature from 30 to 50 ºC. None of the ions studied (K+, Na+, Ca2+, Hg2+, Mg2+, Mn2+, Cu2+ and Zn2+) was required for the catalytic activity of strain R-926; amylase activity of strain R-991 was stimulated in the presence of K+, Hg2+ and Zn2+. The surfactants SDS, Triton X-100 and Tween-80 did not have a pronounced inhibitory effect on enzyme activities; SDS and Tween-80 caused the highest stimulatory effects. Amylase activities from the rhizobia strains were reduced by up to 30% in the presence of EDTA; amylase activity of R-926 was also inhibited by HgCl2, suggesting that Ca2+and cysteine residues could be important for activity of this strain.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245118
Author(s):  
Betulia de Morais Souto ◽  
Ana Carolina Bitencourt de Araújo ◽  
Pedro Ricardo Vieira Hamann ◽  
Andrêssa de Rezende Bastos ◽  
Isabel de Souza Cunha ◽  
...  

Functional screening of metagenomic libraries is an effective approach for identification of novel enzymes. A Caatinga biome goat rumen metagenomic library was screened using esculin as a substrate, and a gene from an unknown bacterium encoding a novel GH3 enzyme, BGL11, was identified. None of the BGL11 closely related genes have been previously characterized. Recombinant BGL11 was obtained and kinetically characterized. Substrate specificity of the purified protein was assessed using seven synthetic aryl substrates. Activity towards nitrophenyl-β-D-glucopyranoside (pNPG), 4-nitrophenyl-β-D-xylopyranoside (pNPX) and 4-nitrophenyl-β-D-cellobioside (pNPC) suggested that BGL11 is a multifunctional enzyme with β-glucosidase, β-xylosidase, and cellobiohydrolase activities. However, further testing with five natural substrates revealed that, although BGL11 has multiple substrate specificity, it is most active towards xylobiose. Thus, in its native goat rumen environment, BGL11 most likely functions as an extracellular β-xylosidase acting on hemicellulose. Biochemical characterization of BGL11 showed an optimal pH of 5.6, and an optimal temperature of 50°C. Enzyme stability, an important parameter for industrial application, was also investigated. At 40°C purified BGL11 remained active for more than 15 hours without reduction in activity, and at 50°C, after 7 hours of incubation, BGL11 remained 60% active. The enzyme kinetic parameters of Km and Vmax using xylobiose were determined to be 3.88 mM and 38.53 μmol.min-1.mg-1, respectively, and the Kcat was 57.79 s-1. In contrast to BLG11, most β-xylosidases kinetically studied belong to the GH43 family and have been characterized only using synthetic substrates. In industry, β-xylosidases can be used for plant biomass deconstruction, and the released sugars can be fermented into valuable bio-products, ranging from the biofuel ethanol to the sugar substitute xylitol.


1974 ◽  
Vol 31 (01) ◽  
pp. 072-085 ◽  
Author(s):  
M Kopitar ◽  
M Stegnar ◽  
B Accetto ◽  
D Lebez

SummaryPlasminogen activator was isolated from disrupted pig leucocytes by the aid of DEAE chromatography, gel filtration on Sephadex G-100 and final purification on CM cellulose, or by preparative gel electrophoresis.Isolated plasminogen activator corresponds No. 3 band of the starting sample of leucocyte cells (that is composed from 10 gel electrophoretic bands).pH optimum was found to be in pH range 8.0–8.5 and the highest pH stability is between pH range 5.0–8.0.Inhibition studies of isolated plasminogen activator were performed with EACA, AMCHA, PAMBA and Trasylol, using Anson and Astrup method. By Astrup method 100% inhibition was found with EACA and Trasylol and 30% with AMCHA. PAMBA gave 60% inhibition already at concentration 10–3 M/ml. Molecular weight of plasminogen activator was determined by gel filtration on Sephadex G-100. The value obtained from 4 different samples was found to be 28000–30500.


1992 ◽  
Vol 67 (05) ◽  
pp. 582-584 ◽  
Author(s):  
Ichiro Miki ◽  
Akio Ishii

SummaryWe characterized the thromboxane A2/prostaglandin H2 receptors in porcine coronary artery. The binding of [3H]SQ 29,548, a thromboxane A2 antagonist, to coronary arterial membranes was saturable and displaceable. Scatchard analysis of equilibrium binding showed a single class of high affinity binding sites with a dissociation constant of 18.5 ±1.0 nM and the maximum binding of 80.7 ± 5.2 fmol/mg protein. [3H]SQ 29,548 binding was concentration-dependently inhibited by thromboxane A2 antagonists such as SQ 29,548, BM13505 and BM13177 or the thromboxane A2 agonists such as U46619 and U44069. KW-3635, a novel dibenzoxepin derivative, concentration-dependently inhibited the [3H]SQ 29,548 binding to thromboxane A2/prosta-glandin H2 receptors in coronary artery with an inhibition constant of 6.0 ± 0.69 nM (mean ± S.E.M.).


1983 ◽  
Vol 49 (02) ◽  
pp. 096-101 ◽  
Author(s):  
V C Menys ◽  
J A Davies

SummaryPlatelet adhesion to rabbit aortic subendothelium or collagen-coated glass was quantitated in a rotating probe device by uptake of radio-labelled platelets. Under conditions in which aspirin had no effect, dazoxiben, a selective inhibitor of thromboxane synthetase, reduced platelet adhesion to aortic subendothelium by about 40% but did not affect adhesion to collagen-coated glass. Pre-treatment of aortic segments with 15-HPETE, a selective inhibitor of PGI2-synthetase, abolished the inhibitory effect of dazoxiben on adhesion. Concentrations of 6-oxo-PGFlα in the perfusate were raised in the presence of dazoxiben alone, and following addition of thrombin (10 units/ml) there was a 2-3 fold increase in concentration. Perfusion of damaged aorta with platelets labelled with (14C)-arachidonic acid in the presence of thrombin and dazoxiben resulted in the appearance of (14C)-labelled-6-oxo-PGFiα. Inhibition of thromboxane synthetase limits platelet adhesion probably by promoting vascular synthesis of PGI2 from endoperoxides liberated from adherent platelets, which subsequently promotes detachment of cells from the surface.


2018 ◽  
Vol 24 (11) ◽  
Author(s):  
Adriana M. Patarroyo-Vargas ◽  
Yaremis B. Merino-Cabrera ◽  
Jose C. Zanuncio ◽  
Francelina Rocha ◽  
Wellington G. Campos ◽  
...  

2017 ◽  
Vol 2017 (7) ◽  
pp. 4255-4262
Author(s):  
Elena Torfs ◽  
Julie Doucet ◽  
Domenico Santoro ◽  
Dang Ho ◽  
Medhavi Gupta ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5781
Author(s):  
Janarthanan Supramaniam ◽  
Darren Yi Sern Low ◽  
See Kiat Wong ◽  
Loh Teng Hern Tan ◽  
Bey Fen Leo ◽  
...  

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8–10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document