scholarly journals Ability of Current Phylogenetic Clustering to Detect Speciation History

2021 ◽  
Vol 9 ◽  
Author(s):  
Athanasios S. Kallimanis ◽  
Maria Lazarina ◽  
Mariana A. Tsianou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos Sgardelis

Phylogenetic diversity aims to quantify the evolutionary relatedness among the species comprising a community, using the phylogenetic tree as the metric of the evolutionary relationships. Could these measures unveil the evolutionary history of an area? For example, in a speciation hotspot (biodiversity cradle), we intuitively expect that the species in the community will be more phylogenetically clustered than randomly expected. Here, using a theoretical simulation model, we estimate the ability of phylogenetic metrics of current diversity to detect speciation history. We found that, in the absence of dispersal, if the incipient species do not coexist in the region of speciation (as expected under allopatric speciation), there was no clear phylogenetic clustering and phylogenetic diversity failed to detect speciation history. But if the incipient species coexisted (sympatric speciation), metrics such as standardized effect size of Faith’s Phylogenetic Diversity (PD) and of Mean Nearest Taxon Distance (MNTD) were able to identify areas of high speciation, while Mean Pairwise Distance (MPD) was a poor indicator. PD systematically outperformed MNTD. Dispersal was a game-changer. It allowed species to expand their range, colonize areas, and led to the coexistence of the incipient species originating from a common ancestor. If speciation gradient was spatially contiguous, dispersal strengthened the associations between phylogenetic clustering and speciation history. In the case of spatially random speciation, dispersal blurred the signal with phylogenetic clustering occurring in areas of low or no speciation. Our results imply that phylogenetic clustering is an indicator of speciation history only under certain conditions.

2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


Genome ◽  
2019 ◽  
Vol 62 (9) ◽  
pp. 585-595
Author(s):  
D.A. Veldkornet ◽  
J.B. Adams ◽  
J.S. Boatwright ◽  
A. Rajkaran

Plant DNA barcoding serves as an effective approach to building community phylogenies and increasing our understanding of the factors that determine plant community assemblages. The aims of the study were to (i) barcode macrophytes with high estuarine fidelity and (ii) to determine the phylogenetic diversity (PD) of selected South African estuaries for conservation prioritisation. Three DNA barcoding gene regions (rbcLa, matK, and trnH-psbA) were assessed, and community phylogenies were constructed for 270 estuaries. Generally, the matK barcode had the greatest discrimination success rate of 67.4% (parsimony informative sites = 418). Closely related species formed clades that also represent estuarine habitat types. Estuaries with high phylogenetic diversity along the southeast coast were associated with a combination of mangrove and salt marsh habitats. Species richness was strongly and significantly correlated with PD (r = 0.93; p < 0.000). Based on mean pairwise distance (MPD), more temperate estuaries (56) showed significant phylogenetic clustering compared to subtropical estuaries (24) (p < 0.05). Similarly, based on mean nearest taxon distance (MNTD), significant phylogenetic clustering was highest in temperate estuaries (50) compared to subtropical estuaries (12) (p < 0.05). This suggests that the coexistence of plant species in estuaries is structured by both biotic and abiotic interactions.


Author(s):  
Francisco Prosdocimi ◽  
Sávio Torres de Farias

Genes and gene trees have been extensively used to study the evolutionary relationships among populations, species, families and higher systematic clades of organisms. This brought modern Biology into a sophisticated level of understanding about the evolutionary relationships and diversification patterns that happened along the entire history of organismal evolution in Earth. Genes however have not been placed in the center of questions when one aims to unravel the evolutionary history of genes themselves. Thus, we still ignore whether Insulin share a more recent common ancestor to Hexokinase or DNA polymerase. This brought modern Genetics into a very poor level of understanding about sister group relationships that happened along the entire evolutionary history of genes. Many conceptual challenges must be overcome to allow this broader comprehension about gene evolution. Here we aim to clear the intellectual path in order to provide a fertile research program that will help geneticists to understand the deep ancestry and sister group relationships among different gene families (or orthologs). We aim to propose methods to study gene formation starting from the establishment of the genetic code in pre-cellular organisms like the FUCA (First Universal Common Ancestor) until the formation of the highly complex genome of LUCA (Last UCA), that harbors hundreds of genes families working coordinated into a cellular organism. The deep understanding of ancestral relationships among orthologs will certainly inspire biotechnological and biomedical approaches and allow a deep understanding about how Darwinian molecular evolution operates inside cells and before the appearance of cellular organisms.


Author(s):  
Laura M. Carroll ◽  
Martin Wiedmann

AbstractCereulide-producing members of Bacillus cereus sensu lato (B. cereus s.l.) Group III, also known as “emetic B. cereus”, possess cereulide synthetase, a plasmid-encoded, non-ribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by “emetic B. cereus” has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize Group III B. cereus s.l. genomes which possess ces (ces-positive) alongside their closely related ces-negative counterparts to (i) assess the genomic diversity encompassed by “emetic B. cereus”, and (ii) identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive Group III B. cereus s.l. genomes and the ces-negative genomes interspersed among them (n = 150), we show that “emetic B. cereus” is not clonal; rather, multiple lineages within Group III harbor cereulide-producing strains, all of which share a common ancestor incapable of producing cereulide (posterior probability [PP] 0.86-0.89). The ST 26 common ancestor was predicted to have emerged as ces-negative (PP 0.60-0.93) circa 1904 (95% highest posterior density [HPD] interval 1837.1-1957.8) and first acquired the ability to produce cereulide before 1931 (95% HPD 1893.2-1959.0). Three subsequent ces loss events within ST 26 were observed, including among isolates responsible for B. cereus s.l. toxicoinfection (i.e., “diarrheal” illness).Importance“B. cereus” is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., “emetic” syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., “diarrheal” syndrome). Here, we show that “emetic B. cereus” is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some Group III B. cereus s.l. populations to oscillate between diarrheal and emetic foodborne pathogen over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereus s.l. outbreaks, as some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.


2021 ◽  
Author(s):  
Stéphane Peyrégne ◽  
Janet Kelso ◽  
Benjamin Marco Peter ◽  
Svante Pääbo

Proteins associated with the spindle apparatus, a cytoskeletal structure that ensures the proper segregation of chromosomes during cell division, experienced an unusual number of amino acid substitutions in modern humans after the split from the ancestors of Neandertals and Denisovans. Here, we analyze the history of these substitutions and show that some of the genes in which they occur may have been targets of positive selection. We also find that the two changes in the kinetochore scaffold 1 (KNL1) protein, previously believed to be specific to modern humans, were present in some Neandertals. We show that the KNL1 gene of these Neandertals shared a common ancestor with present-day Africans about 200,000 years ago due to gene flow from the ancestors (or relatives) of modern humans into Neandertals. Subsequently, some non-Africans inherited this modern human-like gene variant from Neandertals, but none inherited the ancestral gene variants. These results add to the growing evidence of early contacts between modern humans and archaic groups in Eurasia and illustrate the intricate relationships among these groups.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dayana E. Salas-Leiva ◽  
Eelco C. Tromer ◽  
Bruce A. Curtis ◽  
Jon Jerlström-Hultqvist ◽  
Martin Kolisko ◽  
...  

AbstractCells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.


2017 ◽  
Author(s):  
Mario E. Muscarella ◽  
James P. O’Dwyer

Bacteria and Archaea represent the base of the evolutionary tree of life and contain the vast majority of phylogenetic and functional diversity. Because these organisms and their traits directly impact ecosystems and human health, a focus on functional traits has become increasingly common in microbial ecology. These trait-based approaches have the potential to link microbial communities and their ecological function. But an open question is how, why, and in what order microorganisms acquired the traits we observe in the present day. To address this, we reconstructed the evolutionary history of microbial traits using genomic data to understand the evolution, selective advantage, and similarity of traits in extant organisms and provide insights into the composition of genomes and communities. We used the geological timeline and physiological expectations to provide independent evidence in support of this evolutionary history. Using this reconstructed evolutionary history, we explored hypotheses related to the composition of genomes. We showed that gene transition rates can be used to make predictions about the size and type of genes in a genome: generalist genomes comprise many evolutionarily labile genes while specialist genomes comprise more highly conserved functional genes. These findings suggest that generalist organisms do not build up and hoard an array of functions, but rather tend to experiment with functions related to environmental sensing, transport, and complex resource degradation. Our results provide a framework for understanding the evolutionary history of extant microorganisms, the origin and maintenanceof traits, and linking evolutionary relatedness and ecological function.


2020 ◽  
Author(s):  
Sumanth Kumar Mutte ◽  
Dolf Weijers

ABSTRACTProtein oligomerization is a fundamental process to build complex functional modules. Domains that facilitate the oligomerization process are diverse and widespread in nature across all kingdoms of life. One such domain is the Phox and Bem1 (PB1) domain, which is functionally (relatively) well understood in the animal kingdom. However, beyond animals, neither the origin nor the evolutionary patterns of PB1-containing proteins are understood. While PB1 domain proteins have been found in other kingdoms, including plants, it is unclear how these relate to animal PB1 proteins.To address this question, we utilized large transcriptome datasets along with the proteomes of a broad range of species. We discovered eight PB1 domain-containing protein families in plants, along with three each in Protozoa and Chromista and four families in Fungi. Studying the deep evolutionary history of PB1 domains throughout eukaryotes revealed the presence of at least two, but likely three, ancestral PB1 copies in the Last Eukaryotic Common Ancestor (LECA). These three ancestral copies gave rise to multiple orthologues later in evolution. Tertiary structural models of these plant PB1 families, combined with Random Forest based classification, indicated family-specific differences attributed to the length of PB1 domain and the proportion of β-sheets.This study identifies novel PB1 families and reveals considerable complexity in the protein oligomerization potential at the origin of eukaryotes. The newly identified relationships provide an evolutionary basis to understand the diverse functional interactions of key regulatory proteins carrying PB1 domains across eukaryotic life.


2011 ◽  
Vol 8 (2) ◽  
pp. 222-225 ◽  
Author(s):  
Shan Huang ◽  
T. Jonathan Davies ◽  
John L. Gittleman

Phylogenetic diversity (PD) represents the evolutionary history of a species assemblage and is a valuable measure of biodiversity because it captures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the functional integrity of the world's ecosystems, and species extinction will have a large impact on ecosystems in areas where the ecosystem cost per species extinction is high. Here, we show that impacts from global extinctions are linked to spatial location. Using a phylogeny of all mammals, we compare regional losses of PD against a model of random extinction. At regional scales, losses differ dramatically: several biodiversity hotspots in southern Asia and Amazonia will lose an unexpectedly large proportion of PD. Global analyses may therefore underestimate the impacts of extinction on ecosystem processes and function because they occur at finer spatial scales within the context of natural biogeography.


2014 ◽  
Vol 111 (10) ◽  
pp. 3763-3768 ◽  
Author(s):  
James T. Kratzer ◽  
Miguel A. Lanaspa ◽  
Michael N. Murphy ◽  
Christina Cicerchi ◽  
Christina L. Graves ◽  
...  

Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients.


Sign in / Sign up

Export Citation Format

Share Document