scholarly journals Ants’ Personality and Its Dependence on Foraging Styles: Research Perspectives

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhanna Reznikova

The paper is devoted to analyzing consistent individual differences in behavior, also known as “personalities,” in the context of a vital ant task—the detection and transportation of food. I am trying to elucidate the extent to which collective cognition is individual-based and whether a single individual’s actions can suffice to direct the entire colony or colony units. The review analyzes personalities in various insects with different life cycles and provides new insights into the role of individuals in directing group actions in ants. Although it is widely accepted that, in eusocial insects, colony personality emerges from the workers’ personalities, there are only a few examples of investigations of personality at the individual level. The central question of the review is how the distribution of behavioral types and cognitive responsibilities within ant colonies depends on a species’ foraging style. In the context of how workers’ behavioral traits display during foraging, a crucial question is what makes an ant a scout that discovers a new food source and mobilizes its nestmates. In mass recruiting, tandem-running, and even in group-recruiting species displaying leadership, the division of labor between scouts and recruits appears to be ephemeral. There is only little, if any, evidence of ants’ careers and behavioral consistency as leaders. Personal traits characterize groups of individuals at the colony level but not performers of functional roles during foraging. The leader-scouting seems to be the only known system that is based on a consistent personal difference between scouting and foraging individuals.

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 739 ◽  
Author(s):  
Elisa Frasnelli ◽  
Giorgio Vallortigara

Lateralization, i.e., the different functional roles played by the left and right sides of the brain, is expressed in two main ways: (1) in single individuals, regardless of a common direction (bias) in the population (aka individual-level lateralization); or (2) in single individuals and in the same direction in most of them, so that the population is biased (aka population-level lateralization). Indeed, lateralization often occurs at the population-level, with 60–90% of individuals showing the same direction (right or left) of bias, depending on species and tasks. It is usually maintained that lateralization can increase the brain’s efficiency. However, this may explain individual-level lateralization, but not population-level lateralization, for individual brain efficiency is unrelated to the direction of the asymmetry in other individuals. From a theoretical point of view, a possible explanation for population-level lateralization is that it may reflect an evolutionarily stable strategy (ESS) that can develop when individually asymmetrical organisms are under specific selective pressures to coordinate their behavior with that of other asymmetrical organisms. This prediction has been sometimes misunderstood as it is equated with the idea that population-level lateralization should only be present in social species. However, population-level asymmetries have been observed in aggressive and mating displays in so-called “solitary” insects, suggesting that engagement in specific inter-individual interactions rather than “sociality” per se may promote population-level lateralization. Here, we clarify that the nature of inter-individuals interaction can generate evolutionarily stable strategies of lateralization at the individual- or population-level, depending on ecological contexts, showing that individual-level and population-level lateralization should be considered as two aspects of the same continuum.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Vincent Fourcassié ◽  
Tristan Schmitt ◽  
Claire Detrain

Competition acts as a major force in shaping spatially and/or temporally the foraging activity of ant colonies. Interference competition between colonies in particular is widespread in ants where it can prevent the physical access of competitors to a resource, either directly by fighting or indirectly, by segregating the colony foraging areas. Although the consequences of interference competition on ant distribution have been well studied in the literature, the behavioral mechanisms underlying interference competition have been less explored. Little is known on how ants modify their exploration patterns or the choice of a feeding place after experiencing aggressive encounters. In this paper, we show that, at the individual level, the aphid-tending antLasius nigerreacts to the presence of an alien conspecific through direct aggressive behavior and local recruitment in the vicinity of fights. At the colony level, however, no defensive recruitment is triggered and the “risky” area where aggressive encounters occur is not specifically avoided during further exploration or food exploitation. We discuss how between-species differences in sensitivity to interference competition could be related to the spatial and temporal predictability of food resources at stake.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Alejandra Hernandez-Agreda ◽  
William Leggat ◽  
Pim Bongaerts ◽  
César Herrera ◽  
Tracy D. Ainsworth

ABSTRACTStudies of the coral microbiome predominantly characterize the microbial community of the host species as a collective, rather than that of the individual. This ecological perspective on the coral microbiome has led to the conclusion that the coral holobiont is the most diverse microbial biosphere studied thus far. However, investigating the microbiome of the individual, rather than that of the species, highlights common and conserved community attributes which can provide insights into the significance of microbial associations to the host. Here, we show there are consistent characteristics between individuals in the proposed three components of the coral microbiome (i.e., “environmentally responsive community,” “resident or individual microbiome,” and “core microbiome”). We found that the resident microbiome of a photoendosymbiotic coral harbored <3% (∼605 phylotypes) of the 16S rRNA phylotypes associated with all investigated individuals of that species (“species-specific microbiome”) (∼21,654 phylotypes; individuals fromPachyseris speciosa[n= 123],Mycedium elephantotus[n= 95], andAcropora aculeus[n= 91] from 10 reef locations). The remaining bacterial phylotypes (>96%) (environmentally responsive community) of the species-specific microbiome were in fact not found in association with the majority of individuals of the species. Only 0.1% (∼21 phylotypes) of the species-specific microbiome of each species was shared among all individuals of the species (core microbiome), equating to ∼3.4% of the resident microbiome. We found taxonomic redundancy and consistent patterns of composition, structure, and taxonomic breadth across individual microbiomes from the three coral species. Our results demonstrate that the coral microbiome is structured at the individual level.IMPORTANCEWe propose that the coral holobiont should be conceptualized as a diverse transient microbial community that is responsive to the surrounding environment and encompasses a simple, redundant, resident microbiome and a small conserved core microbiome. Most importantly, we show that the coral microbiome is comparable to the microbiomes of other organisms studied thus far. Accurately characterizing the coral-microbe interactions provides an important baseline from which the functional roles and the functional niches within which microbes reside can be deciphered.


Author(s):  
Raphaël Hamard ◽  
Jeroen Aeles ◽  
Nicole Y. Kelp ◽  
Romain Feigean ◽  
François Hug ◽  
...  

The functional difference between the medial gastrocnemius (MG) and lateral gastrocnemius (LG) during walking in humans has not yet been fully established. Although evidence highlights that the MG is activated more than the LG, the link with potential differences in mechanical behavior between these muscles remains unknown. In this study, we aimed to determine whether differences in activation between the MG and LG translate into different fascicle behavior during walking. Fifteen participants walked at their preferred speed under two conditions: 0% and 10% incline treadmill grade. We used surface electromyography and B-mode ultrasound to estimate muscle activation and fascicle dynamics in the MG and LG. We observed a higher normalized activation in the MG than LG during stance, which did not translate into greater MG normalized fascicle shortening. However, we observed significantly less normalized fascicle lengthening in the MG than LG during early stance, which matched with the timing of differences in activation between muscles. This resulted in more isometric behavior of the MG, which likely influences the muscle-tendon interaction and enhances the catapult-like mechanism in the MG compared to the LG. Nevertheless, this interplay between muscle activation and fascicle behavior, evident at the group level, was not observed at the individual level as revealed by the lack of correlation between the MG-LG differences in activation and MG-LG differences in fascicle behavior. The MG and LG are often considered as equivalent muscles but the neuromechanical differences between them suggest that they may have distinct functional roles during locomotion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hugo Pereira ◽  
Romain Willeput ◽  
Claire Detrain

AbstractEusocial insects are exposed to a wide range of pathogens while foraging outside their nest. We know that opportunistic scavenging ants are able to assess the sanitary state of food and to discriminate a prey which died from infection by the entomopathogenic fungus Metarhizium brunneum. Here, we investigate whether a contamination of the environment can also influence the behaviour of foragers, both at the individual and collective level. In a Y-maze, Myrmica rubra ants had the choice to forage on two prey patches, one of which containing sporulating items. Unexpectedly, the nearby presence of sporulating bodies did not deter foragers nor prevent them from retrieving palatable prey. Ant colonies exploited both prey patches equally, without further mortality resulting from foraging on the contaminated area. Thus, a contamination of the environment did not prompt an active avoidance by foragers of which the activity depended primarily on the food characteristics. Generalist entomopathogenic fungi such as M. brunneum in the area around the nest appear more to be of a nuisance to ant foragers than a major selective force driving them to adopt avoidance strategies. We discuss the cost–benefit balance derived from the fine-tuning of strategies of pathogen avoidance in ants.


2021 ◽  
Author(s):  
Sarah L Jacobson ◽  
Amanda Puitiza ◽  
Rebecca J Snyder ◽  
Ashley Sheppard ◽  
Joshua M Plotnik

Innovative problem solving is considered a hallmark measure of behavioral flexibility as it describes behavior by which an animal uses previous experience to manipulate its environment to reach a goal. Elephants are a highly social taxa known for their ability to adapt to volatile environments. While innovation has been observed in elephants, one question is how behavioral traits associated with it vary at the individual level. To understand how individual differences in behavior impact expressions of innovation, we used a novel extractive foraging device comprised of three compartments to evaluate innovation in 14 captive Asian elephants. In the first phase of testing, elephants had an opportunity to learn one solution, while the second phase gave them an opportunity to innovate to open two other compartments with different solutions. We measured the behavioral traits of neophilia, persistence, motivation, and exploratory diversity, and hypothesized that higher levels of each would be associated with more innovation and success. Eight elephants innovated to solve three compartments, three solved two, and two solved only one. Consistent with studies in other species, we found that higher innovation scores and success were associated with greater persistence, but not with any other behavioral traits when analyzed per test session. Greater persistence and lower exploratory diversity were associated with success when analyzed at the level of each individual door. Further work is needed to understand how innovation varies both within and between species, with particular attention to the potential impact of anthropogenic change.


2000 ◽  
Vol 6 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Ricard V. Solé ◽  
Eric Bonabeau ◽  
Jordi Delgado ◽  
Pau Fernández ◽  
Jesus Marín

Army ant colonies display complex foraging raid patterns involving thousands of individuals communicating through chemical trails. In this article we explore, by means of a simple search algorithm, the properties of these trails in order to test the hypothesis that their structure reflects an optimized mechanism for exploring and exploiting food resources. The raid patterns of three army ant species, Eciton hamatum, Eciton burchelli, and Eciton rapax, are analyzed. The respective diets of these species involve large but rare, small but common, and a combination of large but rare and small but common food sources. Using a model proposed by Deneubourg et al. [4], we simulate the formation of raid patterns in response to different food distributions. Our results indicate that the empirically observed raid patterns maximize return on investment, that is, the amount of food brought back to the nest per unit of energy expended, for each of the diets. Moreover, the values of the parameters that characterize the three optimal pattern-generating mechanisms are strikingly similar. Therefore the same behavioral rules at the individual level can produce optimal colony-level patterns. The evolutionary implications of these findings are discussed.


2020 ◽  
Vol 51 (3) ◽  
pp. 183-198
Author(s):  
Wiktor Soral ◽  
Mirosław Kofta

Abstract. The importance of various trait dimensions explaining positive global self-esteem has been the subject of numerous studies. While some have provided support for the importance of agency, others have highlighted the importance of communion. This discrepancy can be explained, if one takes into account that people define and value their self both in individual and in collective terms. Two studies ( N = 367 and N = 263) examined the extent to which competence (an aspect of agency), morality, and sociability (the aspects of communion) promote high self-esteem at the individual and the collective level. In both studies, competence was the strongest predictor of self-esteem at the individual level, whereas morality was the strongest predictor of self-esteem at the collective level.


2019 ◽  
Vol 37 (1) ◽  
pp. 18-34
Author(s):  
Edward C. Warburton

This essay considers metonymy in dance from the perspective of cognitive science. My goal is to unpack the roles of metaphor and metonymy in dance thought and action: how do they arise, how are they understood, how are they to be explained, and in what ways do they determine a person's doing of dance? The premise of this essay is that language matters at the cultural level and can be determinative at the individual level. I contend that some figures of speech, especially metonymic labels like ‘bunhead’, can not only discourage but dehumanize young dancers, treating them not as subjects who dance but as objects to be danced. The use of metonymy to sort young dancers may undermine the development of healthy self-image, impede strong identity formation, and retard creative-artistic development. The paper concludes with a discussion of the influence of metonymy in dance and implications for dance educators.


Sign in / Sign up

Export Citation Format

Share Document