scholarly journals Novel Hypoxia-Related Gene Signature for Risk Stratification and Prognosis in Hepatocellular Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanxiao Li ◽  
Limin Jin ◽  
Meng Jin

Hepatocellular carcinoma (HCC) is the most common form of liver cancer with limited therapeutic options and low survival rate. The hypoxic microenvironment plays a vital role in progression, metabolism, and prognosis of malignancies. Therefore, this study aims to develop and validate a hypoxia gene signature for risk stratification and prognosis prediction of HCC patients. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases were used as a training cohort, and one Gene Expression Omnibus database (GSE14520) was served as an external validation cohort. Our results showed that eight hypoxia-related genes (HRGs) were identified by the least absolute shrinkage and selection operator analysis to develop the hypoxia gene signature and demarcated HCC patients into the high- and low-risk groups. In TCGA, ICGC, and GSE14520 datasets, patients in the high-risk group had worse overall survival outcomes than those in the low-risk group (all log-rank P < 0.001). Besides, the risk score derived from the hypoxia gene signature could serve as an independent prognostic factor for HCC patients in the three independent datasets. Finally, a nomogram including the gene signature and tumor-node-metastasis stage was constructed to serve clinical practice. In the present study, a novel hypoxia signature risk model could reflect individual risk classification and provide therapeutic targets for patients with HCC. The prognostic nomogram may help predict individualized survival.

2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Kaifei Zhao ◽  
Lin Xu ◽  
Feng Li ◽  
Jin Ao ◽  
Guojun Jiang ◽  
...  

Abstract Background: Due to the heterogeneity of hepatocellular carcinoma (HCC), hepatocelluarin-associated differentially expressed genes were analyzed by bioinformatics methods to screen the molecular markers for HCC prognosis and potential molecular targets for immunotherapy. Methods: RNA-seq data and clinical follow-up data of HCC were downloaded from The Cancer Genome Atlas (TCGA) database. Multivariate Cox analysis and Lasso regression were used to identify robust immunity-related genes. Finally, a risk prognosis model of immune gene pairs was established and verified by clinical features, test set and Gene Expression Omnibus (GEO) external validation set. Results: A total of 536 immune-related gene (IRGs) were significantly associated with the prognosis of patients with HCC. Ten robust IRGs were finally obtained and a prognostic risk prediction model was constructed by feature selection of Lasso. The risk score of each sample is calculated based on the risk model and is divided into high risk group (Risk-H) and low risk group (Risk-L). Risk models enable risk stratification of samples in training sets, test sets, external validation sets, staging and subtypes. The area under the curve (AUC) in the training set and the test set were all >0.67, and there were significant overall suvival (OS) differences between the Risk-H and Risk-L samples. Compared with the published four models, the traditional clinical features of Grade, Stage and Gender, the model performed better on the risk prediction of HCC prognosis. Conclusion: The present study constructed 10-gene signature as a novel prognostic marker for predicting survival in patients with HCC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiwen Wu ◽  
Tian Lan ◽  
Muqi Li ◽  
Junfeng Liu ◽  
Xukun Wu ◽  
...  

Background: Hepatocellular carcinoma (HCC) is one of the most common aggressive solid malignant tumors and current research regards HCC as a type of metabolic disease. This study aims to establish a metabolism-related mRNA signature model for risk assessment and prognosis prediction in HCC patients.Methods: HCC data were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) was used to screen out the candidate mRNAs and calculate the risk coefficient to establish the prognosis model. A high-risk group and low-risk group were separated for further study depending on their median risk score. The reliability of the prediction was evaluated in the validation cohort and the whole cohort.Results: A total of 548 differential mRNAs were identified from HCC samples (n = 374) and normal controls (n = 50), 45 of which were correlated with prognosis. A total of 373 samples met the screening criteria and there were randomly divided into the training cohort (n = 186) and the validation cohort (n = 187). In the training cohort, six metabolism-related mRNAs were used to construct a prognostic model with a LASSO regression model. Based on the risk model, the overall survival rate of the high-risk cohort was significantly lower than that of the low-risk cohort. The results of a time-ROC curve proved that the risk score (AUC = 0.849) had a higher prognostic value than the pathological grade, clinical stage, age or gender.Conclusion: The model constructed by the six metabolism-related mRNAs has a significant value for survival prediction and can be applied to guide the evaluation of HCC and the designation of clinical therapy.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9774
Author(s):  
Chaozhi Tang ◽  
Jiakang Ma ◽  
Xiuli Liu ◽  
Zhengchun Liu

Background Hepatocellular carcinoma (HCC) is the fifth most common cancer. Since changes in liver metabolism contribute to liver disease development, it is necessary to build a metabolism-related prognostic model for HCC. Methods We constructed a metabolism-related-gene (MRG) signature comprising nine genes, which segregated HCC patients into high- and low-risk groups. Results The survival rate (overall survival: OS; relapse-free survival; and progression-free survival) of patients in the low-risk group of The Cancer Genome Atlas (TCGA) cohort was significantly higher than that of patients in the high-risk group. The OS prognostic signature was validated in the International Cancer Genome Consortium independent cohort. The corresponding receiver operating characteristic curves of the model indicated that the signature had good diagnostic efficiency, in terms of improving OS over 1, 3, and 5 years. Hierarchical analysis demonstrated that the MRG signature was significantly associated with better prognosis in male patients, patients aged ≤ 65 years, and patients carrying the wild-type TP53 or CTNNB1 genes. A nomogram was established, and good performance and clinical practicability were confirmed. Additionally, using the GSE109211 dataset from the Gene Expression Omnibus database, we were able to verify that the nine genes in this MRG signature had different responses to sorafenib, suggesting that some of these MRGs may act as therapeutic targets for HCC. Conclusions We believe that these findings will add value in terms of the diagnosis, treatment, and prognosis of HCC.


Open Medicine ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. 135-150
Author(s):  
Li Li ◽  
Yundi Cao ◽  
YingRui Fan ◽  
Rong Li

Abstract Hepatocellular carcinoma (HCC) has a high incidence and poor prognosis and is the second most fatal cancer, and certain HCC patients also show high heterogeneity. This study developed a prognostic model for predicting clinical outcomes of HCC. RNA and microRNA (miRNA) sequencing data of HCC were obtained from the cancer genome atlas. RNA dysregulation between HCC tumors and adjacent normal liver tissues was examined by DESeq algorithms. Survival analysis was conducted to determine the basic prognostic indicators. We identified competing endogenous RNA (ceRNA) containing 15,364 pairs of mRNA–long noncoding RNA (lncRNA). An imbalanced ceRNA network comprising 8 miRNAs, 434 mRNAs, and 81 lncRNAs was developed using hypergeometric test. Functional analysis showed that these RNAs were closely associated with biosynthesis. Notably, 53 mRNAs showed a significant prognostic correlation. The least absolute shrinkage and selection operator’s feature selection detected four characteristic genes (SAPCD2, DKC1, CHRNA5, and UROD), based on which a four-gene independent prognostic signature for HCC was constructed using Cox regression analysis. The four-gene signature could stratify samples in the training, test, and external validation sets (p <0.01). Five-year survival area under ROC curve (AUC) in the training and validation sets was greater than 0.74. The current prognostic gene model exhibited a high stability and accuracy in predicting the overall survival (OS) of HCC patients.


2021 ◽  
Author(s):  
Ju Kun Wang ◽  
Ke Han ◽  
Chao Zhang ◽  
Xin Chen ◽  
Yu Li ◽  
...  

Purpose: ADME genes are genes involved in drug absorption, distribution, metabolism, and excretion (ADME). Previous studies report that expression levels of ADME-related genes correlate with prognosis of hepatocellular carcinoma (HCC) patients. However, the role of ADME gene expression on HCC prognosis has not been fully explored. This study sought to construct a prediction model using ADME-related genes for prognosis of HCC. Methods: Transcriptome and clinical data were retrieved from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), which were used as training and validation cohorts, respectively. A prediction model was constructed using univariate Cox regression and LASSO analysis. Patients were divided into high- and low-risk groups based on the median risk score. The predictive ability of the risk signature was estimated through bioinformatics analyses. Results: Six ADME-related genes (CYP2C9, ABCB6, ABCC5, ADH4, DHRS13, and SLCO2A1) were used to construct the prediction model with a good predictive ability. Univariate and multivariate Cox regression analyses showed the risk signature was an independent predictor of overall survival. A single-sample gene set enrichment analysis (ssGSEA) strategy showed a significant relationship between risk signature and immune status. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed differentially expressed genes in the high- and low-risk groups were enriched in biological process associated with metabolic and cell cycle pathways. Conclusion: A prediction model was constructed using six ADME-related genes for prediction of HCC prognosis. This signature can be used to improve HCC diagnosis, treatment, and prognosis in clinical use.


2021 ◽  
Author(s):  
Xiaopeng Ding ◽  
Jiahao Yu ◽  
Xin Shi ◽  
Kangwei Li ◽  
Shuoyi Ma ◽  
...  

Abstract Background: NEDD1 (NEDD1 Gamma-Tubulin Ring Complex Targeting Factor) plays a crucial impact in regulating cell cycle and the development of scirrhous gastric cancer. However, the role of NEDD1 hasn’t been reported in hepatocellular carcinoma (HCC) so far. The aim of this research is to explore the role of NEDD1 on the development and prognosis of HCC. Methods: HCC-related data were download from The Cancer Genome Atlas (TCGA) database. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set enrichment analysis (GSEA) were conducted by the LinkedOmics database. Results: The expression of NEDD1 has significant difference between tumor and adjacent normal tissues in HCC (P<0.01). We also found that NEDD1 was an independent risk factor in HCC patients (HR 1.643, 95%CI 1.125–2.398; P = 0.01). The study also demonstrated that NEDD1 expression was significantly relevant to the expression of several immune checkpoint genes, including CTLA-4, PD-L1 and PD-1. GSEA revealed that Cell cycle, MicroRNAs in cancer and Ribosome pathways were significantly enriched in NEDD1 overexpression phenotype. By integrating NEDD1 with other relevant factors, we constructed the prognostic nomogram to help the improvement of the prognosis for patients with HCC. The data from the International Cancer Genome Consortium (ICGC) database were used as an independent external validation of our prognostic model. Conclusion: The expression level of NEDD1 was negatively correlated to the prognosis of HCC patients and it may be a promising therapeutic target of HCC, which probably be able to predict the efficacy of immunotherapy for HCC patients.


2020 ◽  
Author(s):  
Andi Ma ◽  
Yukai Sun ◽  
Racheal O. Ogbodu ◽  
Ling Xiao ◽  
Haibing Deng ◽  
...  

Abstract Background: It is well known that long non-coding RNAs (lncRNAs) play a vital role in cancer. We aimed to explore the prognostic value of potential immune-related lncRNAs in hepatocellular carcinoma (HCC). Methods: Validated the established lncRNA signature of 343 patients with HCC from The Cancer Genome Atlas (TCGA) and 81 samples from Gene Expression Omnibus (GEO). Immune-related lncRNAs for HCC prognosis were evaluated using Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. LASSO analysis was performed to calculate a risk score formula to explore the difference in overall survival between high- and low-risk groups in TCGA, which was verified using GEO, Gene Ontology (GO), and pathway-enrichment analysis. These analyses were used to identify the function of screened genes and construct a co-expression network of these genes. Results: Using computational difference algorithms and lasso Cox regression analysis, the differentially expressed and survival-related immune-related genes (IRGs) among patients with HCC were established as five novel immune-related lncRNA signatures (AC099850.3, AL031985.3, PRRT3-AS1, AC023157.3, MSC-AS1). Patients in the low‐risk group showed significantly better survival than patients in the high‐risk group ( P = 3.033e−05). The signature identified can be an effective prognostic factor to predict patient survival. The nomogram showed some clinical net benefits predicted by overall survival. In order to explore its underlying mechanism, several methods of enrichment were elucidated using Gene Set Enrichment Analysis. Conclusion: Identifying five immune-related lncRNA signatures has important clinical implications for predicting patient outcome and guiding tailored therapy for patients with HCC with further prospective validation.


2021 ◽  
Author(s):  
Jianlu Song ◽  
Rexiati Ruze ◽  
Yuan Chen ◽  
Ruiyuan Xu ◽  
Xinpeng Yin ◽  
...  

Abstract Background: Pancreatic cancer (PC) is a highly malignant tumor featured with high intra-tumoral heterogeneity and poor prognosis. Cell-in-cell (CIC) structures have been reported in multiple tumor types, and their presence is thought to promote clonal selection and tumor evolution. Here, we aimed to establish a CIC-related gene signature for predicting the prognosis and evaluating immune microenvironment in PC. Methods: In this study, the gene expression data, as well as corresponding clinicopathological data of PC and normal pancreatic tissues were collected from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases. Differential gene expression analysis, random forest screening, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed on 101 CIC-related genes to construct a prognostic gene signature. The effectiveness and robustness of the prognostic gene signature were evaluated by receiver operating characteristic (ROC) curves, Kaplan-Meier survival analysis and establishing the nomogram model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to annotate the biological functions of the differentially expressed genes (DEGs). Quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) staining were validated the core gene expression in both mRNA and protein levels. Results: A 4-gene signature was constructed to stratify patients into the low-risk and high-risk groups with distinct survival outcomes, somatic mutation profiles and immune features. The high-risk group had poorer prognosis than did the low-risk group. This signature was found to be an independent prognostic factor for PC patients with favorable predictive efficiency. Functional enrichment analyses showed that numerous terms and pathways associated with invasion and metastasis were enriched in the high-risk group. Moreover, the high-risk group had a higher tumor mutation burdens and lower immune cell infiltrations. KRT7, as the most important risk gene, was significantly associated with the worse prognosis of PC. CIC formation assay performing in PC cell lines indicated that KRT7 expression was correlated with CIC frequency. Conclusions: The signature based on four CIC-related genes could be applicable for predicting the prognosis of PC, and targeting CIC processes may be a potential therapeutic option. Further studies are needed to reveal the underlying molecular mechanisms and biological implications of CIC in PC progression.


2021 ◽  
Vol 7 ◽  
Author(s):  
Enfa Zhao ◽  
Shimin Chen ◽  
Ying Dang

Objective: The purpose of this study was to develop and validate a novel immune checkpoint–related gene signature for prediction of overall survival (OS) in hepatocellular carcinoma (HCC).Methods: mRNA expression profiles and clinical follow-up information were obtained in the International Cancer Genome Consortium database. An external dataset from The Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma database was used to validate the results. The univariate and multivariate Cox regression analyses were performed based on the differentially expressed genes. We generated a four-mRNA signature to predict patient survival. Furthermore, the reliability and validity were validated in TCGA cohort. An integrated bioinformatics approach was performed to evaluate its diagnostic and prognostic value.Results: A four-gene (epidermal growth factor, mutated in colorectal cancer, mitogen-activated protein kinase kinase 2, and NRAS proto-oncogene, GTPase) signature was built to classify patients into two risk groups using a risk score with different OS in two cohorts (all P &lt; 0.0001). Multivariate regression analysis demonstrated the signature was an independent predictor of HCC. Furthermore, the signature presented an excellent diagnostic power in differentiating HCC and adjacent tissues. Immune cell infiltration analysis revealed that the signature was associated with a number of immune cell subtypes.Conclusion: We identified a four–immune checkpoint–related gene signature as a robust biomarker with great potential for clinical application in risk stratification and OS prediction in HCC patients and could be a potential indicator of immunotherapy in HCC. The diagnostic signature had been validated to accurately distinguish HCC from adjacent tissues.


Sign in / Sign up

Export Citation Format

Share Document