scholarly journals Comprehensive Analysis of Tumor Microenvironment Identified Prognostic Immune-Related Gene Signature in Ovarian Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Na Li ◽  
Biao Li ◽  
Xianquan Zhan

BackgroundAccumulating evidence demonstrated that tumor microenvironmental cells played important roles in predicting clinical outcomes and therapeutic efficacy. We aimed to develop a reliable immune-related gene signature for predicting the prognosis of ovarian cancer (OC).MethodsSingle sample gene-set enrichment analysis (ssGSEA) of immune gene-sets was used to quantify the relative abundance of immune cell infiltration and develop high- and low-abundance immune subtypes of 308 OC samples. The presence of infiltrating stromal/immune cells in OC tissues was calculated as an estimate score. We estimated the correlation coefficients among the immune subtype, clinicopathological feature, immune score, distribution of immune cells, and tumor mutation burden (TMB). The differentially expressed immune-related genes between high- and low-abundance immune subtypes were further used to construct a gene signature of a prognostic model in OC with lasso regression analysis.ResultsThe ssGSEA analysis divided OC samples into high- and low-abundance immune subtypes based on the abundance of immune cell infiltration, which was significantly related to the estimate score and clinical characteristics. The distribution of immune cells was also significantly different between high- and low-abundance immune subtypes. The correlation analysis showed the close relationship between TMB and the estimate score. The differentially expressed immune-related genes between high- and low-abundance immune subtypes were enriched in multiple immune-related pathways. Some immune checkpoints (PDL1, PD1, and CTLA-4) were overexpressed in the high-abundance immune subtype. Furthermore, the five-immune-related-gene-signature prognostic model (CCL18, CXCL13, HLA-DOB, HLA-DPB2, and TNFRSF17)-based high-risk and low-risk groups were significantly related to OC overall survival.ConclusionImmune-related genes were the promising predictors of prognosis and survival, and the comprehensive landscape of tumor microenvironmental cells of OC has potential for therapeutic schedule monitoring.

2021 ◽  
Vol 12 ◽  
Author(s):  
Na Li ◽  
Jiahong Wang ◽  
Xianquan Zhan

Accumulating evidence indicates that immunotherapy helped to improve the survival and quality-of-life of patients with lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) besides chemotherapy and gene targeting treatment. This study aimed to develop immune-related gene signatures in LUAD and LUSC subtypes, respectively. LUAD and LUSC samples were divided into high- and low-abundance groups of immune cell infiltration (Immunity_H and Immunity_L) based on the abundance of immune cell infiltrations. The distribution of immune cells was significantly different between the high- and low-immunity subtypes in LUAD and LUSC samples. The differentially expressed genes (DEGs) between those two groups in LUAD and LUSC contain some key immune-related genes, such as PDL1, PD1, CTLA-4, and HLA families. The DEGs were enriched in multiple immune-related pathways. Furthermore, the seven-immune-related-gene-signature (CD1B, CHRNA6, CLEC12B, CLEC17A, CLNK, INHA, and SLC14A2) prognostic model-based high- and low-risk groups were significantly associated with LUAD overall survival and clinical characteristics. The eight-immune-related-gene-signature (C4BPB, FCAMR, GRAPL, MAP1LC3C, MGC2889, TRIM55, UGT1A1, and VIPR2) prognostic model-based high- and low-risk groups were significantly associated with LUSC overall survival and clinical characteristics. The prognostic models were tested as good ones by receiver operating characteristic, principal component analysis, univariate and multivariate analysis, and nomogram. The verifications of these two immune-related-gene-signature prognostic models showed consistency in the train and test cohorts of LUAD and LUSC. In addition, patients with LUAD in the low-risk group responded better to immunotherapy than those in the high-risk group. This study revealed two reliable immune-related-gene-signature models that were significantly associated with prognosis and tumor microenvironment cell infiltration in LUAD and LUSC, respectively. Evaluation of the integrated characterization of multiple immune-related genes and pathways could help to predict the response to immunotherapy and monitor immunotherapy strategies.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianlei Bi ◽  
Fangfang Bi ◽  
Xue Pan ◽  
Qing Yang

Abstract Background Glycolysis affects tumor growth, invasion, chemotherapy resistance, and the tumor microenvironment. In this study, we aimed to construct a glycolysis-related prognostic model for ovarian cancer and analyze its relationship with the tumor microenvironment’s immune cell infiltration. Methods We obtained six glycolysis-related gene sets for gene set enrichment analysis (GSEA). Ovarian cancer data from The Cancer Genome Atlas (TCGA) database and two Gene Expression Omnibus (GEO) datasets were divided into two groups after removing batch effects. We compared the tumor environments' immune components in high-risk and low-risk groups and analyzed the correlation between glycolysis- and immune-related genes. Then, we generated and validated a predictive model for the prognosis of ovarian cancer using the glycolysis-related genes. Results Overall, 27/329 glycolytic genes were associated with survival in ovarian cancer, 8 of which showed predictive value. The tumor cell components in the tumor microenvironment did not differ between the high-risk and low-risk groups; however, the immune score differed significantly between groups. In total, 13/24 immune cell types differed between groups, including 10 T cell types and three other immune cell types. Eight glycolysis-related prognostic genes were related to the expression of multiple immune-related genes at varying degrees, suggesting a relationship between glycolysis and immune response. Conclusions We identified eight glycolysis-related prognostic genes that effectively predicted survival in ovarian cancer. To a certain extent, the newly identified gene signature was related to the tumor microenvironment, especially immune cell infiltration and immune-related gene expression. These findings provide potential biomarkers and therapeutic targets for ovarian cancer.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bo Xiao ◽  
Liyan Liu ◽  
Aoyu Li ◽  
Cheng Xiang ◽  
Pingxiao Wang ◽  
...  

Osteosarcoma is the most common malignant bone tumor in children and adolescence. Multiple immune-related genes have been reported in different cancers. The aim is to identify an immune-related gene signature for the prospective evaluation of prognosis for osteosarcoma patients. In this study, we evaluated the infiltration of immune cells in 101 osteosarcoma patients downloaded from TARGET using the ssGSEA to the RNA-sequencing of these patients, thus, high immune cell infiltration cluster, middle immune cell infiltration cluster and low immune cell infiltration cluster were generated. On the foundation of high immune cell infiltration cluster vs. low immune cell infiltration cluster and normal vs. osteosarcoma, we found 108 common differentially expressed genes which were sequentially submitted to univariate Cox and LASSO regression analysis. Furthermore, GSEA indicated some pathways with notable enrichment in the high- and low-immune cell infiltration cluster that may be helpful in understanding the potential mechanisms. Finally, we identified seven immune-related genes as prognostic signature for osteosarcoma. Kaplan-Meier analysis, ROC curve, univariate and multivariate Cox regression further confirmed that the seven immune-related genes signature was an innovative and significant prognostic factor independent of clinical features. These results of this study offer a means to predict the prognosis and survival of osteosarcoma patients with uncovered seven-gene signature as potential biomarkers.


2020 ◽  
Author(s):  
Yifei Dai ◽  
Weijie Qiang ◽  
Kequan Lin ◽  
Yu Gui ◽  
Xun Lan ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) ranks the fourth in terms of cancer-related mortality globally. Herein, in this research, we attempted to develop a novel immune-related gene signature that could predict survival and efficacy of immunotherapy for HCC patients.Methods: The transcriptomic and clinical data of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) and GSE14520 datasets, followed by acquisition of immune-related genes from the ImmPort database. Afterwards, an immune-related gene-based prognostic index (IRGPI) was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. Kaplan-Meier survival curves as well as time-dependent receiver operating characteristic (ROC) curve were performed to evaluate its predictive capability. Besides, both univariate and multivariate analysis on overall survival for the IRGPI and multiple clinicopathologic factors were carried out, followed by the construction of nomogram. Finally, we explored the possible correlation of IRGPI with immune cell infiltration or immunotherapy efficacy. Results: Analysis of 365 HCC samples identified 11 differentially expressed genes, which were selected to establish the IRGPI. Notably, it can predict survival of HCC patients more accurately than published biomarkers. Furthermore, IRGPI can predict the infiltration of immune cells in the tumor microenvironment of HCC, as well as the response of immunotherapy.Conclusion: Collectively, the currently established IRGPI can accurately predict survival, reflect the immune microenvironment, and predict the efficacy of immunotherapy among HCC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Na Li ◽  
Yalin Li ◽  
Peixian Zheng ◽  
Xianquan Zhan

BackgroundCancer stem cells (CSCs) refer to cells with self-renewal capability in tumors. CSCs play important roles in proliferation, metastasis, recurrence, and tumor heterogeneity. This study aimed to identify immune-related gene-prognostic models based on stemness index (mRNAsi) in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), respectively.MethodsX-tile software was used to determine the best cutoff value of survival data in LUAD and LUSC based on mRNAsi. Tumor purity and the scores of infiltrating stromal and immune cells in lung cancer tissues were predicted with ESTIMATE R package. Differentially expressed immune-related genes (DEIRGs) between higher- and lower-mRNAsi subtypes were used to construct prognostic models.ResultsmRNAsi was negatively associated with StromalScore, ImmuneScore, and ESTIMATEScore, and was positively associated with tumor purity. LUAD and LUSC samples were divided into higher- and lower-mRNAsi groups with X-title software. The distribution of immune cells was significantly different between higher- and lower-mRNAsi groups in LUAD and LUSC. DEIRGs between those two groups in LUAD and LUSC were enriched in multiple cancer- or immune-related pathways. The network between transcriptional factors (TFs) and DEIRGs revealed potential mechanisms of DEIRGs in LUAD and LUSC. The eight-gene-signature prognostic model (ANGPTL5, CD1B, CD1E, CNTFR, CTSG, EDN3, IL12B, and IL2)-based high- and low-risk groups were significantly related to overall survival (OS), tumor microenvironment (TME) immune cells, and clinical characteristics in LUAD. The five-gene-signature prognostic model (CCL1, KLRC3, KLRC4, CCL23, and KLRC1)-based high- and low-risk groups were significantly related to OS, TME immune cells, and clinical characteristics in LUSC. These two prognostic models were tested as good ones with principal components analysis (PCA) and univariate and multivariate analyses. Tumor T stage, pathological stage, or metastasis status were significantly correlated with DEIRGs contained in prognostic models of LUAD and LUSC.ConclusionCancer stemness was not only an important biological process in cancer progression but also might affect TME immune cell infiltration in LUAD and LUSC. The mRNAsi-related immune genes could be potential biomarkers of LUAD and LUSC. Evaluation of integrative characterization of multiple immune-related genes and pathways could help to understand the association between cancer stemness and tumor microenvironment in lung cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hualin Chen ◽  
Yang Pan ◽  
Xiaoxiang Jin ◽  
Gang Chen

AbstractTo explore novel therapeutic targets, develop a gene signature and construct a prognostic nomogram of bladder cancer (BCa). Transcriptome data and clinical traits of BCa were downloaded from UCSC Xena database and Gene Expression Omnibus (GEO) database. We then used the method of Single sample Gene Set Enrichment analysis (ssGSEA) to calculate the infiltration abundances of 24 immune cells in eligible BCa samples. By weighted correlation network analysis (WGCNA), we identified turquoise module with strong and significant association with the infiltration abundance of immune cells which were associated with overall survival of BCa patients. Subsequently, we developed an immune cell infiltration-related gene signature based on the module genes (MGs) and immune-related genes (IRGs) from the Immunology Database and Analysis Portal (ImmPort). Then, we tested the prognostic power and performance of the signature in both discovery and external validation datasets. A nomogram integrated with signature and clinical features were ultimately constructed and tested. Five prognostic immune cell infiltration-related module genes (PIRMGs), namely FPR1, CIITA, KLRC1, TNFRSF6B, and WFIKKN1, were identified and used for gene signature development. And the signature showed independent and stable prognosis predictive power. Ultimately, a nomogram consisting of signature, age and tumor stage was constructed, and it showed good and stable predictive ability on prognosis. Our prognostic signature and nomogram provided prognostic indicators and potential immunotherapeutic targets for BCa. Further researches are needed to verify the clinical effectiveness of this nomogram and these biomarkers.


2021 ◽  
Vol 10 ◽  
Author(s):  
Jia-An Zhang ◽  
Xu-Yue Zhou ◽  
Dan Huang ◽  
Chao Luan ◽  
Heng Gu ◽  
...  

Melanoma remains a potentially deadly malignant tumor. The incidence of melanoma continues to rise. Immunotherapy has become a new treatment method and is widely used in a variety of tumors. Original melanoma data were downloaded from TCGA. ssGSEA was performed to classify them. GSVA software and the "hclust" package were used to analyze the data. The ESTIMATE algorithm screened DEGs. The edgeR package and Venn diagram identified valid immune-related genes. Univariate, LASSO and multivariate analyses were used to explore the hub genes. The "rms" package established the nomogram and calibrated the curve. Immune infiltration data were obtained from the TIMER database. Compared with that of samples in the high immune cell infiltration cluster, we found that the tumor purity of samples in the low immune cell infiltration cluster was higher. The immune score, ESTIMATE score and stromal score in the low immune cell infiltration cluster were lower. In the high immune cell infiltration cluster, the immune components were more abundant, while the tumor purity was lower. The expression levels of TIGIT, PDCD1, LAG3, HAVCR2, CTLA4 and the HLA family were also higher in the high immune cell infiltration cluster. Survival analysis showed that patients in the high immune cell infiltration cluster had shorter OS than patients in the low immune cell infiltration cluster. IGHV1-18, CXCL11, LTF, and HLA-DQB1 were identified as immune cell infiltration-related DEGs. The prognosis of melanoma was significantly negatively correlated with the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, neutrophils and macrophages. In this study, we identified immune-related melanoma core genes and relevant immune cell subtypes, which may be used in targeted therapy and immunotherapy of melanoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Jin ◽  
Jun Wang ◽  
Lina Ge ◽  
Qing Hu

Objective: Sciatica pertains to neuropathic pain that has been associated with inflammatory response. We aimed to identify significant immune-related biomarkers for sciatica in peripheral blood.Methods: We utilized the GSE150408 expression profiling data from the Gene Expression Omnibus (GEO) database as the training dataset and extracted immune-related genes for further analysis. Differentially expressed immune-related genes (DEIRGs) between healthy controls and patients with sciatica were selected using the “limma” package and verified in clinical specimens by quantitative reverse transcription PCR (RT-qPCR). A diagnostic immune-related gene signature was established using the training model and random forest (RF), generalized linear model (GLM), and support vector machine (SVM) models. Sciatica patient subtypes were identified using the consensus clustering method.Results: Thirteen significant DEIRGs were acquired, of which five (CRP, EREG, FAM19A4, RLN1, and WFIKKN1) were selected to establish a diagnostic immune-related gene signature according to the most appropriate training model, namely, the RF model. A clinical application nomogram model was established based on the expression level of the five DEIRGs. The sciatica patients were divided into two subtypes (C1 and C2) according to the consensus clustering method.Conclusions: Our research established a diagnostic five immune-related gene signature to discriminate sciatica and identified two sciatica subtypes, which may be beneficial to the clinical diagnosis and treatment of sciatica.


2021 ◽  
Author(s):  
Rongxin Chen ◽  
Qing Han ◽  
Huale Zhang ◽  
Jianying Yan

Abstract Background Preeclampsia (PE) is a complex multisystem disease and its etiology remains unclear. The aim of this study was to identify potential immune-related diagnostic genes for PE, analyze the role of immune cell infiltration in PE, and explore the mechanism underlying PE-induced disruption of immune tolerance at the maternal-fetal interface. Methods We used the PE dataset GES25906 from Gene Expression Omnibus and immune-related genes from ImmPort database. The differentially expressed genes (DEGs) were identified using the “limma” package, and the differentially expressed immune-related genes (DEIGs) were extracted from the DEGs and immune-related genes using Venn diagrams. The potential functions of DEIGs were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Furthermore, the protein–protein interaction network was obtained from the STRING database, and it was visualized using Cytoscape software. Least absolute shrinkage and selection operator logistic regression was used to verify the diagnostic markers of PE and build a predicting model. The model was validated using datasets GSE66273 and GSE75010. Finally, CIBERSORT was used to evaluate the infiltration of immune cells in PE tissues. Results Six genes (ACTG1, ENG, IFNGR1, ITGB2, NOD1, and SPP1) enriched in Th17 cell differentiation, cytokine-cytokine receptor interaction, innate immune response, and positive regulation of MAPK cascade pathways were identified, and a predicting model was built. Datasets GSE66273 and GSE75010 were used to validate the model, and the area under the curve was 0.8333 and 0.8107, respectively. Immune cell infiltration analysis revealed an increase in plasma cells and gamma delta T cells and a decrease in resting natural killer cells in the high score group according to the predictive model risk values. Conclusions We developed a risk model to predict PE and proved that immune imbalance at the maternal-fetal interface plays a key role in the pathogenesis of PE.


Sign in / Sign up

Export Citation Format

Share Document