scholarly journals Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability

2021 ◽  
Vol 12 ◽  
Author(s):  
Brandon J. Payliss ◽  
Ayushi Patel ◽  
Anneka C. Sheppard ◽  
Haley D. M. Wyatt

All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.

2019 ◽  
Vol 116 (28) ◽  
pp. 14174-14180 ◽  
Author(s):  
Ameer L. Elaimy ◽  
John J. Amante ◽  
Lihua Julie Zhu ◽  
Mengdie Wang ◽  
Charlotte S. Walmsley ◽  
...  

Vascular endothelial growth factor (VEGF) signaling in tumor cells mediated by neuropilins (NRPs) contributes to the aggressive nature of several cancers, including triple-negative breast cancer (TNBC), independently of its role in angiogenesis. Understanding the mechanisms by which VEGF–NRP signaling contributes to the phenotype of such cancers is a significant and timely problem. We report that VEGF–NRP2 promote homologous recombination (HR) in BRCA1 wild-type TNBC cells by contributing to the expression and function of Rad51, an essential enzyme in the HR pathway that mediates efficient DNA double-strand break repair. Mechanistically, we provide evidence that VEGF–NRP2 stimulates YAP/TAZ-dependent Rad51 expression and that Rad51 is a direct YAP/TAZ–TEAD transcriptional target. We also discovered that VEGF–NRP2–YAP/TAZ signaling contributes to the resistance of TNBC cells to cisplatin and that Rad51 rescues the defects in DNA repair upon inhibition of either VEGF–NRP2 or YAP/TAZ. These findings reveal roles for VEGF–NRP2 and YAP/TAZ in DNA repair, and they indicate a unified mechanism involving VEGF–NRP2, YAP/TAZ, and Rad51 that contributes to resistance to platinum chemotherapy.


2014 ◽  
Vol 35 (2) ◽  
pp. 406-416 ◽  
Author(s):  
Su Chen ◽  
Chen Wang ◽  
Luxi Sun ◽  
Da-Liang Wang ◽  
Lu Chen ◽  
...  

Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients.


2013 ◽  
Vol 41 (1) ◽  
pp. 314-320 ◽  
Author(s):  
John K. Blackwood ◽  
Neil J. Rzechorzek ◽  
Sian M. Bray ◽  
Joseph D. Maman ◽  
Luca Pellegrini ◽  
...  

During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5′–3′ end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna Biernacka ◽  
Yingjie Zhu ◽  
Magdalena Skrzypczak ◽  
Romain Forey ◽  
Benjamin Pardo ◽  
...  

AbstractMaintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.


Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1348-1353 ◽  
Author(s):  
Abderrahmane Kaidi ◽  
Brian T. Weinert ◽  
Chunaram Choudhary ◽  
Stephen P. Jackson

SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6 promotes genome stability.


2015 ◽  
Vol 197 (19) ◽  
pp. 3121-3132 ◽  
Author(s):  
Richa Gupta ◽  
Stewart Shuman ◽  
Michael S. Glickman

ABSTRACTMycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation ofadnABorrecOindividually causes partial impairment of HR, but loss ofadnABandrecOin combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNAin vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis ofrecFandrecRin mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair.IMPORTANCEThis study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284–2295, 2013,http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair.


Author(s):  
Vikash Kumar Yadav ◽  
Corentin Claeys Bouuaert

Developmentally programmed formation of DNA double-strand breaks (DSBs) by Spo11 initiates a recombination mechanism that promotes synapsis and the subsequent segregation of homologous chromosomes during meiosis. Although DSBs are induced to high levels in meiosis, their formation and repair are tightly regulated to minimize potentially dangerous consequences for genomic integrity. In S. cerevisiae, nine proteins participate with Spo11 in DSB formation, but their molecular functions have been challenging to define. Here, we describe our current view of the mechanism of meiotic DSB formation based on recent advances in the characterization of the structure and function of DSB proteins and discuss regulatory pathways in the light of recent models.


2022 ◽  
Author(s):  
Tej Pandita ◽  
Vijay Kumari Charaka ◽  
Sharmistha Chakraborty ◽  
Chi-Lin Tsai ◽  
Xiaoyan Wang ◽  
...  

Efficient DNA double strand break (DSB) repair by homologous recombination (HR), as orchestrated by histone and non-histone proteins, is critical to genome stability, replication, transcription, and cancer avoidance. Here we report that Heterochromatin Protein1 beta (HP1β) acts as a key component of the HR DNA resection step by regulating BRCA1 enrichment at DNA damage sites, a function largely dependent on the HP1β chromo shadow domain (CSD). HP1β itself is enriched at DSBs within gene-rich regions through a CSD interaction with Chromatin Assembly Factor 1 (CAF1) and HP1β depletion impairs subsequent BRCA1 enrichment. An added interaction of the HP1β CSD with the Polycomb Repressor Complex 1 ubiquitinase component RING1A facilitates BRCA1 recruitment by increasing H2A lysine 118-119 ubiquitination, a marker for BRCA1 recruitment. Our findings reveal that HP1β interactions, mediated through its CSD with RING1A, promote H2A ubiquitination and facilitate BRCA1 recruitment at DNA damage sites, a critical step in DSB repair by the HR pathway. These collective results unveil how HP1β is recruited to DSBs in gene-rich regions and how HP1β subsequently promotes BRCA1 recruitment to further HR DNA damage repair by stimulating CtIP-dependent resection.


2020 ◽  
Vol 122 (5) ◽  
pp. 613-623 ◽  
Author(s):  
Aldo S. Bader ◽  
Ben R. Hawley ◽  
Ania Wilczynska ◽  
Martin Bushell

AbstractEffective DNA repair is essential for cell survival: a failure to correctly repair damage leads to the accumulation of mutations and is the driving force for carcinogenesis. Multiple pathways have evolved to protect against both intrinsic and extrinsic genotoxic events, and recent developments have highlighted an unforeseen critical role for RNA in ensuring genome stability. It is currently unclear exactly how RNA molecules participate in the repair pathways, although many models have been proposed and it is possible that RNA acts in diverse ways to facilitate DNA repair. A number of well-documented DNA repair factors have been described to have RNA-binding capacities and, moreover, screens investigating DNA-damage repair mechanisms have identified RNA-binding proteins as a major group of novel factors involved in DNA repair. In this review, we integrate some of these datasets to identify commonalities that might highlight novel and interesting factors for future investigations. This emerging role for RNA opens up a new dimension in the field of DNA repair; we discuss its impact on our current understanding of DNA repair processes and consider how it might influence cancer progression.


Sign in / Sign up

Export Citation Format

Share Document