scholarly journals The Genetic Structure and East-West Population Admixture in Northwest China Inferred From Genome-Wide Array Genotyping

2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Ma ◽  
Jinwen Chen ◽  
Xiaomin Yang ◽  
Jingya Bai ◽  
Siwei Ouyang ◽  
...  

Northwest China is a contacting region for East and West Eurasia and an important center for investigating the migration and admixture history of human populations. However, the comprehensive genetic structure and admixture history of the Altaic speaking populations and Hui group in Northwest China were still not fully characterized due to insufficient sampling and the lack of genome-wide data. Thus, We genotyped genome-wide SNPs for 140 individuals from five Chinese Mongolic, Turkic speaking groups including Dongxiang, Bonan, Yugur, and Salar, as well as the Hui group. Analysis based on allele-sharing and haplotype-sharing were used to elucidate the population history of Northwest Chinese populations, including PCA, ADMIXTURE, pairwise Fst genetic distance, f-statistics, qpWave/qpAdm and ALDER, fineSTRUCTURE and GLOBETROTTER. We observed Dongxiang, Bonan, Yugur, Salar, and Hui people were admixed populations deriving ancestry from both East and West Eurasians, with the proportions of West Eurasian related contributions ranging from 9 to 15%. The genetic admixture was probably driven by male-biased migration- showing a higher frequency of West Eurasian related Y chromosomal lineages than that of mtDNA detected in Northwest China. ALDER-based admixture and haplotype-based GLOBETROTTER showed this observed West Eurasian admixture signal was introduced into East Eurasia approximately 700 ∼1,000 years ago. Generally, our findings provided supporting evidence that the flourish transcontinental communication between East and West Eurasia played a vital role in the genetic formation of northwest Chinese populations.

2017 ◽  
Author(s):  
Iain Mathieson ◽  
Songül Alpaslan Roodenberg ◽  
Cosimo Posth ◽  
Anna Szécsényi-Nagy ◽  
Nadin Rohland ◽  
...  

AbstractFarming was first introduced to southeastern Europe in the mid-7thmillennium BCE – brought by migrants from Anatolia who settled in the region before spreading throughout Europe. To clarify the dynamics of the interaction between the first farmers and indigenous hunter-gatherers where they first met, we analyze genome-wide ancient DNA data from 223 individuals who lived in southeastern Europe and surrounding regions between 12,000 and 500 BCE. We document previously uncharacterized genetic structure, showing a West-East cline of ancestry in hunter-gatherers, and show that some Aegean farmers had ancestry from a different lineage than the northwestern Anatolian lineage that formed the overwhelming ancestry of other European farmers. We show that the first farmers of northern and western Europe passed through southeastern Europe with limited admixture with local hunter-gatherers, but that some groups mixed extensively, with relatively sex-balanced admixture compared to the male-biased hunter-gatherer admixture that prevailed later in the North and West. Southeastern Europe continued to be a nexus between East and West after farming arrived, with intermittent genetic contact from the Steppe up to 2,000 years before the migration that replaced much of northern Europe’s population.


2017 ◽  
Vol 158 (3) ◽  
pp. 761-772 ◽  
Author(s):  
Gang Liu ◽  
Xiaolong Hu ◽  
Aaron B. A. Shafer ◽  
Minghao Gong ◽  
Morigen Han ◽  
...  

2013 ◽  
Vol 59 (4) ◽  
pp. 458-474 ◽  
Author(s):  
Sen Song ◽  
Shijie Bao ◽  
Ying Wang ◽  
Xinkang Bao ◽  
Bei An ◽  
...  

Abstract Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. Although the effects of recent glacial cycles on genetic diversity have been well studied on species in Europe and North America, genetic legacy of species in the Pleistocene in north and northwest of China where glaciations was not synchronous with the ice sheet development in the Northern Hemisphere or or had little or no ice cover during the glaciations’ period, remains poorly understood. Here we used phylogeographic methods to investigate the genetic structure and population history of the chukar partridge Alec-toris chukar in north and northwest China. A 1,152 – 1,154 bp portion of the mtDNA CR were sequenced for all 279 specimens and a total number of 91 haplotypes were defined by 113 variable sites. High levels of gene flow were found and gene flow estimates were greater than 1 for most population pairs in our study. The AMOVA analysis showed that 81% and 16% of the total genetic variability was found within populations and among populations within groups, respectively. The demographic history of chukar was examined using neutrality tests and mismatch distribution analyses and results indicated Late Pleistocene population expansion. Results revealed that most populations of chukar experienced population expansion during 0.027 ? 0.06 Ma. These results are at odds with the results found in Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023 to 0.018 Ma). Our results are not consistent with the results from avian species of Tibetan Plateau, either, where species experienced population expansion following the retreat of the extensive glaciation period (0.5 to 0.175 Ma).


2020 ◽  
Vol 28 (8) ◽  
pp. 1111-1123 ◽  
Author(s):  
Guanglin He ◽  
Zheng Wang ◽  
Jianxin Guo ◽  
Mengge Wang ◽  
Xing Zou ◽  
...  

Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 579-583
Author(s):  
Diyendo Massilani ◽  
Laurits Skov ◽  
Mateja Hajdinjak ◽  
Byambaa Gunchinsuren ◽  
Damdinsuren Tseveendorj ◽  
...  

We present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in northeastern Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry. These segments derive from the same Denisovan admixture event(s) that contributed to present-day mainland Asians but are distinct from the Denisovan DNA segments in present-day Papuans and Aboriginal Australians.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e96074 ◽  
Author(s):  
Stefania Sarno ◽  
Alessio Boattini ◽  
Marilisa Carta ◽  
Gianmarco Ferri ◽  
Milena Alù ◽  
...  

2019 ◽  
Author(s):  
Anders Bergström ◽  
Shane A. McCarthy ◽  
Ruoyun Hui ◽  
Mohamed A. Almarri ◽  
Qasim Ayub ◽  
...  

AbstractGenome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented private genetic variation in southern and central Africa and in Oceania and the Americas, but an absence of fixed, private variants between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the last 10,000 years, a potentially major population growth episode after the peopling of the Americas, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations. We also demonstrate benefits to the study of population relationships of genome sequences over ascertained array genotypes. These genome sequences are freely available as a resource with no access or analysis restrictions.


Author(s):  
Choongwon Jeong ◽  
Ke Wang ◽  
Shevan Wilkin ◽  
William Timothy Treal Taylor ◽  
Bryan K. Miller ◽  
...  

SummaryThe Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region’s population history. Here we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher Eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.


2017 ◽  
Author(s):  
John Hawks

AbstractHuman populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so that inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent “wave” of larger effective population size, prior to the bottlenecks and expansions of the last 100,000 years. Here I carry out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have large effects on the inference of effective population size.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 111 ◽  
Author(s):  
Xueting Sun ◽  
Jing Tao ◽  
Alain Roques ◽  
Youqing Luo

Sirex noctilio F. (Hymenoptera: Siricidae: Siricinae), a new invasive species in China, is a significant international forestry pest which, transported via logs and related wood packing materials, has led to environmental damage and substantial economic loss in many countries around the world. It was first detected in China in 2013, and since then infestations have been found in 18 additional sites. Using a 322 bp fragment of the mitochondrial barcode gene COI, we studied the genetic diversity and structure of S. noctilio populations in both native and invaded ranges, with a specific focus in China. Twelve haplotypes were found across the native and invaded distribution of the pest, of which three were dominant; among these there were only one or two mutational steps between each pair of haplotypes. No obvious genetic structure was found other than in Chinese populations. China has a unique and dominant haplotype not found elsewhere, and compared with the rest of the world, the genetic structure of Chinese populations suggested a multiple invasion scenario.


Sign in / Sign up

Export Citation Format

Share Document