scholarly journals Host Transcriptomic Response Following Administration of Rotavirus Vaccine in Infants’ Mimics Wild Type Infection

2021 ◽  
Vol 11 ◽  
Author(s):  
Alberto Gómez-Carballa ◽  
Ruth Barral-Arca ◽  
Miriam Cebey-López ◽  
Maria José Currás-Tuala ◽  
Sara Pischedda ◽  
...  

BackgroundRotavirus (RV) is an enteric pathogen that has devastating impact on childhood morbidity and mortality worldwide. The immunologic mechanism underlying the protection achieved after RV vaccination is not yet fully understood.MethodsWe compared the transcriptome of children affected by community-acquired RV infection and children immunized with a live attenuated RV vaccine (RotaTeq®).ResultsRV vaccination mimics the wild type infection causing similar changes in children’s transcriptome, including transcripts associated with cell cycle, diarrhea, nausea, vomiting, intussusception, and abnormal morphology of midgut. A machine learning approach allowed to detect a combination of nine-transcripts that differentiates vaccinated from convalescent-naturally infected children (AUC: 90%; 95%CI: 70–100) and distinguishes between acute-infected and healthy control children (in both cases, AUC: 100%; 95%CI: 100–100). We identified a miRNA hsa-mir-149 that seems to play a role in the host defense against viral pathogens and may have an antiviral role.DiscussionOur findings might shed further light in the understanding of RV infection, its functional link to intussusception causes, as well as guide development of antiviral treatments and safer and more effective vaccines. The nine-transcript signature may constitute a marker of vaccine protection and helps to differentiate vaccinated from naturally infected or susceptible children.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 18-18
Author(s):  
Leticia P Sanglard ◽  
Felipe Hickmann ◽  
Yijian Huang ◽  
Kent A Gray ◽  
Daniel Linhares ◽  
...  

Abstract Immunoglobulin G antibody response, measured as sample-to-positive (S/P) ratio, to Porcine Reproductive and Respiratory Syndrome virus (PRRSV) has been proposed as an indicator trait for improved reproductive performance in PRRSV-infected purebred sows and PRRSV-vaccinated crossbred gilts. In this study, we investigated the genetic correlations (rg) of S/P ratio following a PRRSV outbreak and PRRSV-vaccination with performance in non-exposed and PRRSV-exposed sows. PRRSV outbreak phase was defined based on previously described methodologies after the detection of typical clinical signs of PRRSV infection. 541 Landrace sows had S/P ratio measured at ~54 days after the beginning of the PRRSV outbreak (S/Poutbreak), and 906 Landrace x Large White naïve F1 gilts had S/P ratio measured at ~50 days after vaccination with a commercial modified live PRRSV vaccine (S/PVx). 711 and 428 Landrace sows had reproductive performance recorded before and during the PRRSV outbreak, respectively. 811 vaccinated F1 animals had farrowing performance for up to 3 parities. All animals were genotyped for ~28K SNPs. The estimate of rg of S/Poutbreakwith S/PVx was high (rg±SE = 0.72±0.18). Estimates of rg of S/Poutbreak with reproductive performance in F1 sows were low to moderate, ranging from 0.05±0.23 (number stillborn) to 0.30±0.20 (total number born). Estimates of rg of S/PVxwith reproductive performance in non-infected purebred sows were moderate and favorable with number born alive (0.50±0.23), but low (0 to -0.11±0.23) with litter mortality traits. Estimates of rg of S/PVx were moderate and negative (-0.47±0.18) with the number of mummies in PRRSV-infected purebred sows and low with other traits (-0.29±0.18 for total number born to 0.05±0.18 for number stillborn). These results indicate that selection for antibody response following a PRRSV outbreak collected in purebred sows and to PRRSV vaccination collected in commercial crossbred gilts may increase litter size of non-infected and PRRSV-exposed purebred and commercial crossbred sows.


Author(s):  
Isabel Webb ◽  
Jiabao Xu ◽  
Carmen Sanchez-Cañizares ◽  
Ramakrishnan Karunakaran ◽  
Vinoy Ramachandran ◽  
...  

Symbiosis between Rhizobium leguminosarum and Pisum sativum requires tight control of redox balance in order to maintain respiration under the microaerobic conditions required for nitrogenase, whilst still producing the eight electrons and sixteen molecules of ATP needed for nitrogen fixation. FixABCX, electron transfer flavoproteins essential for nitrogen fixation, are encoded on the Sym plasmid (pRL10), immediately upstream of nifA, which encodes the general transcriptional regulator of nitrogen fixation. There is a symbiotically-regulated NifA-dependent promoter upstream of fixA (PnifA1), as well as an additional basal constitutive promoter driving background expression of nifA (PnifA2). These were confirmed by 5’-end mapping of transcription start sites using differential (d) RNA-seq. Complementation of polar fixAB and fixX mutants (Fix- strains) confirmed expression of nifA from PnifA1 in symbiosis. Electron microscopy combined with single-cell Raman microspectroscopy characterization of fixAB mutants revealed previously unknown heterogeneity in bacteroid morphology within a single nodule. Two morphotypes of mutant fixAB bacteroids were observed. One was larger than wild-type bacteroids and contained high levels of polyhydroxy-3-butyrate, a complex energy/reductant storage product. A second bacteroid phenotype was morphologically and compositionally different and resembled wild-type infection thread cells. From these two characteristic fixAB mutant bacteroid morphotypes, inferences can be drawn on the metabolism of wild-type nitrogen-fixing bacteroids.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Lucy X. Li ◽  
Camaron R. Hole ◽  
Javier Rangel-Moreno ◽  
Shabaana A. Khader ◽  
Tamara L. Doering

ABSTRACT Cryptococcus neoformans is a fungal pathogen that kills almost 200,000 people each year and is distinguished by abundant and unique surface glycan structures that are rich in xylose. A mutant strain of C. neoformans that cannot transport xylose precursors into the secretory compartment is severely attenuated in virulence in mice yet surprisingly is not cleared. We found that this strain failed to induce the nonprotective T helper cell type 2 (Th2) responses characteristic of wild-type infection, instead promoting sustained interleukin 12p40 (IL-12p40) induction and increased IL-17A (IL-17) production. It also stimulated dendritic cells to release high levels of proinflammatory cytokines, a behavior we linked to xylose expression. We further discovered that inducible bronchus-associated lymphoid tissue (iBALT) forms in response to infection with either wild-type cryptococci or the mutant strain with reduced surface xylose; although iBALT formation is slowed in the latter case, the tissue is better organized. Finally, our temporal studies suggest that lymphoid structures in the lung restrict the spread of mutant fungi for at least 18 weeks after infection, which is in contrast to ineffective control of the pathogen after infection with wild-type cells. These studies demonstrate the role of xylose in modulation of host response to a fungal pathogen and show that cryptococcal infection triggers iBALT formation.


2019 ◽  
Vol 31 (4) ◽  
pp. 497-508 ◽  
Author(s):  
Ewa Kwit ◽  
Artur Rzeżutka

Various PCR-based assays for rabbit viruses have gradually replaced traditional virologic assays, such as virus isolation, because they offer high-throughput analysis, better test sensitivity and specificity, and allow vaccine and wild-type virus strains to be fully typed and differentiated. In addition, PCR is irreplaceable in the detection of uncultivable or fastidious rabbit pathogens or those occurring in low quantity in a tested sample. We provide herein an overview of the current state of the art in the molecular detection of lagomorph viral pathogens along with details of their targeted gene or nucleic acid sequence and recommendations for their application. Apart from the nucleic acids–based methods used for identification and comprehensive typing of rabbit viruses, novel methods such as microarray, next-generation sequencing, and mass spectrometry (MALDI-TOF MS) could also be employed given that they offer greater throughput in sample screening for viral pathogens. Molecular methods should be provided with an appropriate set of controls, including an internal amplification control, to confirm the validity of the results obtained.


1998 ◽  
Vol 140 (4) ◽  
pp. 873-883 ◽  
Author(s):  
S.H. Lillie ◽  
S.S. Brown

Abstract. We have previously reported that a defect in Myo2p, a myosin in budding yeast (Saccharomyces cerevisiae), can be partially corrected by overexpression of Smy1p, which is by sequence a kinesin-related protein (Lillie, S.H., and S.S. Brown. 1992. Nature. 356:358– 361). Such a functional link between putative actin- and microtubule-based motors is surprising, so here we have tested the prediction that Smy1p indeed acts as a microtubule-based motor. Unexpectedly, we found that abolition of microtubules by nocodazole does not interfere with the ability of Smy1p to correct the mutant Myo2p defect, nor does it interfere with the ability of Smy1p to localize properly. In addition, other perturbations of microtubules, such as treatment with benomyl or introduction of tubulin mutations, do not exacerbate the Myo2p defect. Furthermore, a mutation in SMY1 strongly predicted to destroy motor activity does not destroy Smy1p function. We have also observed a genetic interaction between SMY1 and two of the late SEC mutations, sec2 and sec4. This indicates that Smy1p can play a role even when Myo2p is wild type, and that Smy1p acts at a specific step of the late secretory pathway. We conclude that Smy1p does not act as a microtubule-based motor to localize properly or to compensate for defective Myo2p, but that it must instead act in some novel way.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3618-3623
Author(s):  
Reiko Akagi ◽  
Chiaki Nishitani ◽  
Hideo Harigae ◽  
Yutaka Horie ◽  
Luba Garbaczewski ◽  
...  

Cloning, expression, and genotype studies of the defective gene for δ-aminolevulinate dehydratase (ALAD) in a patient with an unusual late onset of ALAD deficiency porphyria (ADP) were carried out. This patient was unique in that he developed the inherited disease, together with polycythemia, at the age of 63. ALAD activity in erythrocytes of the patient was less than 1% of the normal control level. ALAD complementary DNA (cDNA) isolated from the patient's Epstein-Barr virus (EBV)–transformed lymphoblastoid cells had 2 base transitions in the same allele, G177 to C and G397 to A, resulting in amino acid substitutions K59N and G133R, respectively. It has been verified that the patient had no other ALAD mutations in this and in the other allele. By restriction fragment length polymorphism (RFLP) analysis, all family members of the proband who had one-half ALAD activity compared with the ALAD activity of the healthy control were shown to have the same set of base transitions. Expression of ALAD cDNA in CHO cells revealed that K59N cDNA produced a protein with normal ALAD activity, while G133R and K59N/G133R cDNA produced proteins with 8% and 16% ALAD activity, respectively, compared with that expressed by the wild type cDNA. These findings indicate that while the proband was heterozygous for ALAD deficiency, the G397 to A transition resulting in the G133R substitution is responsible for ADP, and the clinical porphyria developed presumably due to an expansion of the polycythemic clone in erythrocytes that carried the mutant aladallele.


2005 ◽  
Vol 4 (12) ◽  
pp. 2160-2169 ◽  
Author(s):  
K. Sohn ◽  
M. Roehm ◽  
C. Urban ◽  
N. Saunders ◽  
D. Rothenstein ◽  
...  

ABSTRACT We applied two-dimensional gel electrophoresis to identify downstream effectors of CPH1 and EFG1 under hypha-inducing conditions in Candida albicans. Among the proteins that were expressed in wild-type cells but were strongly downregulated in a cph1Δ/efg1Δ double mutant in α-minimal essential medium at 37°C, we could identify not-yet-characterized proteins, including Cor33-1p and Cor33-2p. The two proteins are almost identical (97% identity) and represent products of allelic isoforms of the same gene. Cor33p is highly similar to Cip1p from Candida sp. but lacks any significant homology to proteins from Saccharomyces cerevisiae. Strikingly, both proteins share homology with phenylcoumaran benzylic ether reductases and isoflavone reductases from plants. For other hypha-inducing media, like yeast-peptone-dextrose (YPD) plus serum at 37°C, we could not detect any transcription for COR33 in wild-type cells, indicating that Cor33p is not hypha specific. In contrast, we found a strong induction for COR33 when cells were treated with 5 mM hydrogen peroxide. However, under oxidative conditions, transcription of COR33 was not dependent on EFG1, indicating that other regulatory factors are involved. In fact, upregulation depends on CAP1 at least, as transcript levels were clearly reduced in a Δcap1 mutant strain under oxidative conditions. Unlike in wild-type cells, transcription of COR33 in a tsa1Δ mutant can be induced by treatment with 0.1 mM hydrogen peroxide. This suggests a functional link between COR33 and thiol-specific antioxidant-like proteins that are important in the oxidative-stress response in yeasts. Concordantly, cor33Δ deletion mutants show retarded growth on YPD plates supplemented with hydrogen peroxide, indicating that COR33 in general is implicated in conferring tolerance toward oxidative stress on Candida albicans.


2020 ◽  
Author(s):  
Andrej A. Arsovski ◽  
Joseph E. Zemke ◽  
Morgan Hamm ◽  
Lauren Houston ◽  
Andrés Romanowski ◽  
...  

ABSTRACTCrop biomass and yield are tightly linked to how the light signaling network translates information about the environment into allocation of resources, including photosynthates. Once activated, the phytochrome (phy) class of photoreceptors signal and re-deploy carbon resources to alter growth, plant architecture, and reproductive timing. Brassica rapa has been used as a crop model to test for conservation of the phytochrome–carbon network. B. rapa phyB mutants have significantly decreased or absent CO2-stimulated growth responses in seedlings, and adult plants have reduced chlorophyll levels, photosynthetic rate, stomatal index, and seed yield. Here, we examine the transcriptomic response of adult wild-type and BrphyB leaves to darkening and recovery in light. Three days of darkness was sufficient to elicit a response in wild type leaves suggesting a shift from carbon fixation and nutrient acquisition to active redistribution of cellular resources. Upon a return to light, wild-type leaves appeared to transcriptionally return to a pre-darkness state restoring a focus on nutrient acquisition. Overall, BrphyB mutant plants have a similar response with key differences in genes involved in photosynthesis and light response which deviate from the wild type transcriptional dynamics. Genes targeted to the chloroplast are especially affected. Adult BrphyB mutant plants had fewer, larger chloroplasts, further linking phytochromes, chloroplast development, photosynthetic deficiencies and optimal resource allocation.


Author(s):  
Benjamin A. Krishna ◽  
Amanda B. Wass ◽  
Rajashri Sridharan ◽  
Christine M. O’Connor

AbstractThe ability to establish a latent infection with periodic reactivation events ensures herpesviruses, like human cytomegalovirus (HCMV), lifelong infection and serial passage. The host-pathogen relationship throughout HCMV latency is complex, though both cellular and viral factors influence the equilibrium between latent and lytic infection. We and others have shown one of the viral-encoded G protein-coupled receptors, US28, is required for HCMV latency. US28 potentiates signals both constitutively and in response to ligand binding, and we previously showed deletion of the ligand binding domain or mutation of the G protein-coupling domain results in the failure to maintain latency similar to deletion of the entire US28 open reading frame (ORF). Interestingly, a recent publication detailed an altered phenotype from that previously reported, showing US28 is required for viral reactivation rather than latency, suggesting the US28 ORF deletion impacts transcription of the surrounding genes. Here, we show an independently generated US28-stop mutant, like the US28 ORF deletion mutant, fails to maintain latency in hematopoietic cells. Further, we found US27 and US29 transcription in each of these mutants was comparable to their expression during wild type infection, suggesting neither US28 mutant alters mRNA levels of the surrounding genes. Finally, infection with a US28 ORF deletion virus expressed US27 protein comparable to its expression following wild type infection. In sum, our new data strongly support previous findings from our lab and others, detailing a requirement for US28 during HCMV latent infection.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2089-2089
Author(s):  
Xiaofei Ni ◽  
Lingjun Wang ◽  
Tianshu Yu ◽  
Haoyi Wang ◽  
Yu Hou ◽  
...  

Abstract Low-dose decitabine modulates myeloid-derived suppressor cell function and restores immune tolerance in immune thrombocytopenia Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized with increased risk of bleeding. Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature cells and natural inhibitors of adaptive immunity. Metabolic changes within MDSCs elucidate a direct influence on immunologic consequences of their suppressive activity. Liver kinase B1 (LKB1) is a tumor suppressor gene of STK11/LKB1 coding serine/Sue, and LKB1 signaling pathway plays an important role as a "bridge" between metabolic balance and functional homeostasis of immune cells. Our previous studies demonstrated that low dose decitabine, a hypomethylating agent, significantly increased the number of mature polyploidy megakaryocytes and exhibited long-term clinical efficacy. Besides, it also increased the production of Treg and enhanced their immunosuppressive function in ITP. However, whether decitabine could regulate the metabolic and suppressive activity of MDSCs in ITP is unknown. The percentage of MDSCs in peripheral blood mononuclear cells (PBMCs) was determined by flow cytometry, which was shown to be significantly lower in ITP compared with that in healthy controls. We then investigated the effect of low-dose decitabine in patients with active ITP, where decitabine induced a significant expansion of MDSCs in line with an impressive platelet response. In the in vitro experiments, MDSCs were isolated from PBMCs of ITP patients or healthy controls and cultured with different concentrations of decitabine (0/10nM/50nM/100 nM/1uM/10μM) for 7 days. A concentration gradient from 50nM to 1uM stimulated MDSCs amplification in a dose-dependent manner, and we chose an optimal concentration of 100 nM. Moreover, we found the mRNA expression level of LKB1, AMPKα1, AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, and AMPKγ2 was significantly lower in ITP patients than that in healthy control subjects. After incubation with decitabine (100nM), the relative expression of the above molecules were significantly increased compared to untreated levels. We also analyzed oxygen consumption rate (OCR) and key parameters of mitochondrial function within MDSCs. Overall, the OCR curve of ITP patients was lower than that of the healthy control subjects, and the OCR curve of ITP patients significantly improved after treatment with decitabine. We sorted the cultured MDSCs and co-cultured them with CFSE-labeled CD4 +CD25 - T cells to evaluate the suppressive activity of MDSCs. Results indicated that the inhibitory function of decitabine-modulated MDSCs was corrected in line with metabolic rewriting. We further established the ITP murine model by transferring splenocytes of C57BL/6 CD61 knockout mice, immunized against platelets from wild-type syngeneic C57BL/6 mice, into severe combined immune deficient (SCID) mice. MDSCs were sorted from the bone marrow of wild-type mice and incubated with PBS or decitabine, respectively. SCID mice were divided into three groups and received the same numbers of splenocyte transfer, two groups were given additional transfer of PBS-treated or decitabine-treated MDSCs. Our data showed that the decitaine-treated MDSCs group had significantly higher platelet counts compared with control group and PBS-treated MDSCs group. In summary, our findings suggest that the immune function and metabolic characteristics of MDSCs in ITP patients are impaired. These data shed new light on the molecular mechanism of decitabine action by regulating immune function and aerobic metabolism via LKB1, which supervises the immunosuppressive functions of MDSCs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document