scholarly journals Immunostimulatory Endogenous Nucleic Acids Perpetuate Interface Dermatitis—Translation of Pathogenic Fundamentals Into an In Vitro Model

2021 ◽  
Vol 11 ◽  
Author(s):  
Christine Braegelmann ◽  
Tanja Fetter ◽  
Dennis Niebel ◽  
Lara Dietz ◽  
Thomas Bieber ◽  
...  

Interface dermatitis is a histopathological pattern mirroring a distinct cytotoxic immune response shared by a number of clinically diverse inflammatory skin diseases amongst which lichen planus and cutaneous lupus erythematosus are considered prototypic. Interface dermatitis is characterized by pronounced cytotoxic immune cell infiltration and necroptotic keratinocytes at the dermoepidermal junction. The initial inflammatory reaction is established by cytotoxic immune cells that express CXC chemokine receptor 3 and lesional keratinocytes that produce corresponding ligands, CXC motif ligands 9/10/11, recruiting the effector cells to the site of inflammation. During the resulting anti-epithelial attack, endogenous immune complexes and nucleic acids are released from perishing keratinocytes, which are then perceived by the innate immune system as danger signals. Keratinocytes express a distinct signature of pattern recognition receptors and binding of endogenous nucleic acid motifs to these receptors results in interferon-mediated immune responses and further enhancement of CXC chemokine receptor 3 ligand production. In this perspective article, we will discuss the role of innate nucleic acid sensing as a common mechanism in the perpetuation of clinically heterogeneous diseases featuring interface dermatitis based on own data and a review of the literature. Furthermore, we will introduce a keratinocyte-specific in vitro model of interface dermatitis as follows: Stimulation of human keratinocytes with endogenous nucleic acids alone and in combination with interferon gamma leads to pronounced production of distinct cytokines, which are essential in the pathogenesis of interface dermatitis. This experimental approach bears the capability to investigate potential therapeutics in this group of diseases with unmet medical need.

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1439
Author(s):  
Akiko Yamamoto ◽  
Shinji Tanaka ◽  
Keiichiro Ohishi

Copper (Cu) and its alloys have bactericidal activity known as “contact killing” with degradation of nucleic acids inside the bacteria, which is beneficial to inhibit horizontal gene transfer (HGF). In order to understand the nucleic acid degradability of Cu and its alloy surfaces, we developed a new in vitro method to quantitatively evaluate it by a swab method under a “dry” condition and compared it with that of commercially available antibacterial materials such as antibacterial stainless steel, pure silver, and antibacterial resins. As a result, only Cu and its alloys showed continuous degradation of nucleic acids for up to 6 h of contact time. The nucleic acid degradability levels of the Cu alloys and other antibacterial materials correlate to their antibacterial activities evaluated by a film method referring to JIS Z 2801:2012 for Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Nucleic acid degradation by copper (I) and (II) chlorides was confirmed at the ranges over 10 mM and 1–20 mM, respectively, suggesting that the copper ion release may be responsible for the degradation of the nucleic acids on Cu and its alloy surfaces. In conclusion, the higher Cu content in the alloys gave higher nucleic acid degradability and higher antibacterial activities.


1960 ◽  
Vol 199 (4) ◽  
pp. 719-721 ◽  
Author(s):  
Ira G. Wool

Insulin in vitro stimulated the incorporation into the nucleic acid fraction of isolated rat diaphragm of radioactivity from d-glucose-U-C14, adenine-8-C14 and orotic acid-6-C14; insulin had no effect on the incorporation of thymine-2-C14 into muscle nucleic acids. Insulin enhanced the incorporation into nucleic acids of C14 from adenine and orotic acid in the absence of added glucose, and incorporation of adenine-8-C14 was not influenced by glucose concentration over the range 0–600 mg %.


2017 ◽  
Vol 43 (2) ◽  
pp. 832-839 ◽  
Author(s):  
Qingjun Pan ◽  
Yongmin Feng ◽  
Yanxia Peng ◽  
Hongjiu Zhou ◽  
Zhenzhen Deng ◽  
...  

Background/Aims: Basophils have been reported to infiltrate skin lesions in various skin diseases, but not in systemic lupus erythematosus (SLE). This study investigated basophil infiltration in SLE and its mechanism. Methods: Twenty newly diagnosed SLE patients and twenty healthy controls were enrolled. Nine SLE patients underwent skin biopsies. Flow cytometric analysis the phenotype of peripheral basophils and their migration rate toward RANTES and MCP-1 were analyzed with the transwell culture system, also the expression of these two chemokines in skin tissue were analyzed with immunohistochemistry. Results: Increased activation and decreased numbers of peripheral basophils were observed in SLE patients compared with controls. Basophil migration into skin lesions of SLE patients were observed, but not in normal skin tissue. This migration was related to the upregulation of chemokine receptors CCR1 and CCR2 on basophils. In vitro studies showed that migration rate toward RANTES and MCP-1 increased significantly in basophils from SLE patients compared with those from controls. Consistently, high levels of RANTES and MCP-1 expression were observed in skin lesions from SLE patients but not in normal skin tissue. Conclusion: Basophil recruitment to skin lesions of SLE patients mediated by CCR1 and CCR2, which may contribute to tissue damage in SLE.


2006 ◽  
Vol 71 (7) ◽  
pp. 929-955 ◽  
Author(s):  
Vladimir A. Efimov ◽  
Oksana G. Chakhmakhcheva

With the aim to improve physicochemical and biological properties of natural oligonucleotides, many types of DNA analogues and mimics are designed on the basis of hydroxyproline and its derivatives, and their properties are evaluated. Among them, two types of DNA mimics representing hetero-oligomers constructed from alternating monomers of phosphono peptide nucleic acids and monomers on the base of trans-1-acetyl-4-hydroxy-L-proline (HypNA-pPNAs) and oligomers constructed from monomers containing (2S,4R)-1-acetyl-4-hydroxypyrrolidine-2-phosphonic acid backbone (pHypNAs) are of particular interest. In a set of in vitro and in vivo assays, it was shown that HypNA-pPNAs and pHypNAs demonstrated a high potential for the use in nucleic acid based diagnostics, isolation of nucleic acids and antisense experiments. A review with 53 references.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 138-138 ◽  
Author(s):  
Makito Miyake ◽  
Steve Goodison ◽  
Evan Gomes ◽  
Wasia Rizwani ◽  
Shanti Ross ◽  
...  

138 Background: Endothelial cell growth and proliferation are critical for tumoral angiogenesis. We report here that blockade of Chemokine (C-X-C motif) ligand 1 (CXCL1) results in reduction of human endothelial cell proliferation and its ability to induce angiogenesis. Methods: Two human endothelial cell lines, HUVEC and HDMEC, were used in the in vitro assays. Proliferation assay and matrigel tube formation assay were performed to test the inhibitory effect of anti-CXCL antibody on the activity of endothelial cells in vitro. Matrigel plug assay in nude mice was performed to test the in vivo angiogenic activity of CXCL1. Results: CXCL1 interacts with its receptor CXC chemokine Receptor 2 and induces endothelial cell proliferation, whereas blockade of CXCL1 is associated with reduction in cellular proliferation through a decrease in levels of cyclin D and cdk4 and inhibition of angiogenesis through EGF and ERK 1/2. Targeting CXCL1 inhibits neoangiogenesis but has no effect on disrupting established vasculature. Furthermore targeting CXCL1 is associated with reduction in migration of human endothelial cells in an in vitro model. Additionally, neutralizing antibody against CXCL1 in a xenograft angiogenesis model resulted in inhibition of angiogenesis. Conclusions: CXCL1-induced regulation of angiogenesis has not been studied extensively in human cancers, thus these findings illustrate a novel contribution of CXCL1 interactions in pathological angiogenesis. Therefore, the ability to selectively modulate CXCL1, specifically in tumoral angiogenesis, may promote the development of novel oncologic therapeutic strategies.


2010 ◽  
Vol 207 (12) ◽  
pp. 2689-2701 ◽  
Author(s):  
Christoph L. Baumann ◽  
Irene M. Aspalter ◽  
Omar Sharif ◽  
Andreas Pichlmair ◽  
Stephan Blüml ◽  
...  

Recognition of pathogens by the innate immune system requires proteins that detect conserved molecular patterns. Nucleic acids are recognized by cytoplasmic sensors as well as by endosomal Toll-like receptors (TLRs). It has become evident that TLRs require additional proteins to be activated by their respective ligands. In this study, we show that CD14 (cluster of differentiation 14) constitutively interacts with the MyD88-dependent TLR7 and TLR9. CD14 was necessary for TLR7- and TLR9-dependent induction of proinflammatory cytokines in vitro and for TLR9-dependent innate immune responses in mice. CD14 associated with TLR9 stimulatory DNA in precipitation experiments and confocal imaging. The absence of CD14 led to reduced nucleic acid uptake in macrophages. Additionally, CD14 played a role in the stimulation of TLRs by viruses. Using various types of vesicular stomatitis virus, we showed that CD14 is dispensable for viral uptake but is required for the triggering of TLR-dependent cytokine responses. These data show that CD14 has a dual role in nucleic acid–mediated TLR activation: it promotes the selective uptake of nucleic acids, and it acts as a coreceptor for endosomal TLR activation.


RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 95169-95172 ◽  
Author(s):  
Bao T. Le ◽  
Vyacheslav V. Filichev ◽  
Rakesh N. Veedu

We have investigated the applicability of twisted intercalating nucleic acids (TINA)-modified antisense oligonucleotides (AOs) in exon skipping. We found that TINA-modified AOs induced exon skipping.


2019 ◽  
Vol 31 (7) ◽  
pp. 457-463 ◽  
Author(s):  
Lokesh A Kalekar ◽  
Michael D Rosenblum

Abstract The skin is the largest organ in the body and one of the primary barriers to the environment. In order to optimally protect the host, the skin is home to numerous immune cell subsets that interact with each other and other non-immune cells to maintain organ integrity and function. Regulatory T cells (Tregs) are one of the largest immune cell subsets in skin. They play a critical role in regulating inflammation and facilitating organ repair. In doing so, they adopt unique and specialized tissue-specific functions. In this review, we compare and contrast the role of Tregs in cutaneous immune disorders from mice and humans, with a specific focus on scleroderma, alopecia areata, atopic dermatitis, cutaneous lupus erythematosus and psoriasis.


Sign in / Sign up

Export Citation Format

Share Document