scholarly journals CD14 is a coreceptor of Toll-like receptors 7 and 9

2010 ◽  
Vol 207 (12) ◽  
pp. 2689-2701 ◽  
Author(s):  
Christoph L. Baumann ◽  
Irene M. Aspalter ◽  
Omar Sharif ◽  
Andreas Pichlmair ◽  
Stephan Blüml ◽  
...  

Recognition of pathogens by the innate immune system requires proteins that detect conserved molecular patterns. Nucleic acids are recognized by cytoplasmic sensors as well as by endosomal Toll-like receptors (TLRs). It has become evident that TLRs require additional proteins to be activated by their respective ligands. In this study, we show that CD14 (cluster of differentiation 14) constitutively interacts with the MyD88-dependent TLR7 and TLR9. CD14 was necessary for TLR7- and TLR9-dependent induction of proinflammatory cytokines in vitro and for TLR9-dependent innate immune responses in mice. CD14 associated with TLR9 stimulatory DNA in precipitation experiments and confocal imaging. The absence of CD14 led to reduced nucleic acid uptake in macrophages. Additionally, CD14 played a role in the stimulation of TLRs by viruses. Using various types of vesicular stomatitis virus, we showed that CD14 is dispensable for viral uptake but is required for the triggering of TLR-dependent cytokine responses. These data show that CD14 has a dual role in nucleic acid–mediated TLR activation: it promotes the selective uptake of nucleic acids, and it acts as a coreceptor for endosomal TLR activation.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi65-vi65
Author(s):  
Alexander Stegh

Abstract The Stimulator of Interferon Genes (STING) pathway represents a major innate immune sensing mechanism for tumor-derived DNA. Modified cyclic dinucleotides (CDNs) that mimic the endogenous STING ligand cGAMP are currently being explored in patients with solid tumors that amenable to intratumoral delivery. Inadequate bioavailability and insufficient lipophilicity are limiting factors for clinical CDN development, in particular when consideration is given to systemic administration approaches. We have shown that the formulation of oligonucleotides into Spherical Nucleic Acid (SNA) nanostructures, i.e., the presentation of oligonucleotides at high density on the surface of nanoparticle cores, lead to biochemical and biological properties that are radically different from those of linear oligonucleotides. First-generation SNAs conjugated with TLR9-agonsitic DNA oligonculeotides (NCT03086278; solid cancers) and intravenously administered, brain-penetrant siRNA-based SNAs (NCT03020017, recurrent GBM) have recently entered clinical trials. Here, we report the development of a STING-agonistic immunotherapy by targeting cGAS, the sensor of cytosolic dsDNA upstream of STING, with SNAs presenting dsDNA at high surface density. The strategy of using SNAs exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. SNA nanostructures carrying a 45bp IFN-simulating dsDNA oligonucleotide, the most commonly used and widely characterized cGAS activator, potently activated the cGAS-STING pathway, as evidenced by increased IRF responses, elevated protein marker expression indicative of the activated M1 macrophage state, and enhanced expression of pro-inflammatory cytokines in macrophage cultures in vitro, and in intracranial isogenic GBM explants in vivo. Our use of SNAs addresses the challenges of nucleic acid delivery to intracranial tumor sites, exploits the binding of closely-spaced, neighboring dsDNA molecules on the SNA surface to enhance the formation of a dimeric cGAS:DNA complex, and establishes cGAS-agonistic SNAs as a novel class of immune-stimulatory modalities for triggering innate immune responses against tumor.


2011 ◽  
Vol 122 (5) ◽  
pp. 203-214 ◽  
Author(s):  
Mohan R. Dasu ◽  
Sandra Ramirez ◽  
Roslyn R. Isseroff

Diabetes is a mutifactorial metabolic disorder that leads to a number of complications. Diabetes is estimated to affect 36 million people in the U.S.A., and the prevalence of diagnosed and undiagnosed diabetes is at 9.3% and continues to rise. Evidence from experimental animal models as well as humans has indicated that systemic inflammation plays a role in the pathophysiological processes of diabetes and is facilitated by innate immune responses. TLRs (Toll-like receptors) are key innate immune receptors that recognize conserved PAMPs (pathogen-associated molecular patterns), induce inflammatory responses essential for host defences and initiate an adaptive immune response. Although TLR expression is increased in a plethora of inflammatory disorders, the effects of metabolic aberrations on TLRs and their role in diabetes and its complications is still emerging. In the present paper, we provide a systematic review on how TLRs play a detrimental role in the pathogenic processes [increased blood sugar, NEFAs (non-esterified ‘free’ fatty acids), cytokines and ROS (reactive oxygen species)] that manifest diabetes. Furthermore, we will highlight some of the therapeutic strategies targeted at decreasing TLRs to abrogate inflammation in diabetes that may eventually result in decreased complications.


Author(s):  
Kensuke Miyake ◽  
Shin-ichiroh Saitoh ◽  
Ryutaro Fukui ◽  
Takuma Shibata ◽  
Ryota Sato ◽  
...  

Abstract Nucleic acid (NA)-sensing Toll-like receptors (TLRs) are synthesized in the endoplasmic reticulum and mature with chaperones, such as Unc93B1 and the protein associated with TLR4 A (PRAT4A)–gp96 complex. The TLR–Unc93B1 complexes move to the endosomal compartment, where proteases such as cathepsins activate their responsiveness through proteolytic cleavage of the extracellular domain of TLRs. Without proteolytic cleavage, ligand-dependent dimerization of NA-sensing TLRs is prevented by the uncleaved loop in the extracellular domains. Additionally, the association of Unc93B1 inhibits ligand-dependent dimerization of TLR3 and TLR9 and, therefore, Unc93B1 is released from these TLRs before dimerization. Ligand-activated NA-sensing TLRs induce the production of proinflammatory cytokines and act on the endosomal compartment to initiate anterograde trafficking to the cell periphery for type I interferon production. In the endosomal compartment, DNA and RNA are degraded by DNases and RNases, respectively, generating degradation products. DNase 2A and RNase T2 generate ligands for TLR9 and TLR8, respectively. In this mechanism, DNases and RNases control innate immune responses to NAs in endosomal compartments. NA-sensing TLRs and the endosomal compartment work together to monitor environmental cues through endosomes and decide to launch innate immune responses.


2018 ◽  
Vol 34 (1) ◽  
pp. 357-379 ◽  
Author(s):  
Ming-Ming Hu ◽  
Hong-Bing Shu

Microbial nucleic acids are major signatures of invading pathogens, and their recognition by various host pattern recognition receptors (PRRs) represents the first step toward an efficient innate immune response to clear the pathogens. The nucleic acid–sensing PRRs are localized at the plasma membrane, the cytosol, and/or various cellular organelles. Sensing of nucleic acids and signaling by PRRs involve recruitment of distinct signaling components, and PRRs are intensively regulated by cellular organelle trafficking. PRR-mediated innate immune responses are also heavily regulated by posttranslational modifications, including phosphorylation, polyubiquitination, sumoylation, and glutamylation. In this review, we focus on our current understanding of recognition of microbial nucleic acid by PRRs, particularly on their regulation by organelle trafficking and posttranslational modifications. We also discuss how sensing of self nucleic acids and dysregulation of PRR-mediated signaling lead to serious human diseases.


2020 ◽  
Vol 22 (1) ◽  
pp. 172
Author(s):  
Francesca Truzzi ◽  
Camilla Tibaldi ◽  
Anne Whittaker ◽  
Silvia Dilloo ◽  
Enzo Spisni ◽  
...  

There is a need to assess the relationship between improved rheological properties and the immunogenic potential of wheat proteins. The present study aimed to investigate the in vitro effects of total protein extracts from three modern and two landrace Triticum aestivum commercial flour mixes, with significant differences in gluten strength (GS), on cell lines. Cytotoxicity and innate immune responses induced by wheat proteins were investigated using Caco-2 monocultures, two dimensional (2D) Caco-2/U937 co-cultures, and three dimensional (3D) co-cultures simulating the intestinal mucosa with Caco-2 epithelial cells situated above an extra-cellular matrix containing U937 monocytes and L929 fibroblasts. Modern wheat proteins, with increased GS, significantly reduced Caco-2 cell proliferation and vitality in monoculture and 2D co-cultures than landrace proteins. Modern wheat proteins also augmented Caco-2 monolayer disruption and tight junction protein, occludin, redistribution in 3D co-cultures. Release of interleukin-8 into the cell medium and increased U937 monocyte migration in both 2D and 3D co-cultures were similarly apparent. Immuno-activation of migrating U937 cells was evidenced from cluster of differentiation 14 (CD14) staining and CD11b-related differentiation into macrophages. The modern wheat proteins, with gluten polymorphism relatedness and increased GS, were shown to be more cytotoxic and immunogenic than the landrace wheat proteins.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi105
Author(s):  
Akanksha Mahajan ◽  
Lisa Hurley ◽  
Serena Tommasini-Ghelfi ◽  
Corey Dussold ◽  
Alexander Stegh ◽  
...  

Abstract The Stimulator of Interferon Genes (STING) pathway represents a major innate immune sensing mechanism for tumor-derived DNA. Modified cyclic dinucleotides (CDNs) that mimic the endogenous STING ligand cGAMP are currently being explored in patients with solid tumors that are amenable to intratumoral delivery. Inadequate bioavailability and insufficient lipophilicity are limiting factors for clinical CDN development, in particular when consideration is given to systemic administration approaches. We have shown that the formulation of oligonucleotides into Spherical Nucleic Acid (SNA) nanostructures, i.e.,the presentation of oligonucleotides at high density on the surface of nanoparticle cores, lead to biochemical and biological properties that are radically different from those of linear oligonucleotides. First-generation brain-penetrant siRNA-based SNAs (NCT03020017, recurrent GBM) have recently completed early clinical trials. Here, we report the development of a STING-agonistic immunotherapy by targeting cGAS, the sensor of cytosolic dsDNA upstream of STING, with SNAs presenting dsDNA at high surface density. The strategy of using SNAs exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. SNA nanostructures carrying a 45bp IFN-simulating dsDNA oligonucleotide, the most commonly used and widely characterized cGAS activator, potently activated the cGAS-STING pathway in vitro and in vivo. In a poorly immunogenic and highly aggressive syngeneic mouse glioma model, in which tumours were well-established, only one dose of intranasal treatment with STING-SNAs decelerated tumour growth, improved survival and importantly, was well-tolerated. Our use of SNAs addresses the challenges of nucleic acid delivery to intracranial tumor sites via intranasal route, exploits the binding of dsDNA molecules on the SNA surface to enhance the formation of a dimeric cGAS:DNA complex and establishes cGAS-agonistic SNAs as a novel class of immune-stimulatory modalities for triggering innate immune responses against tumor.


2022 ◽  
Author(s):  
LK Metthew Lam ◽  
Jane Dobkin ◽  
Kaitlyn A. Eckart ◽  
Ian Gereg ◽  
Andrew DiSalvo ◽  
...  

Red blood cells (RBCs) demonstrate immunomodulatory capabilities through the expression of nucleic acid sensors. Little is known about bat RBCs, and no studies have examined the immune function of bat erythrocytes. Here we show that bat RBCs express the nucleic acid-sensing Toll-like receptors TLR7 and TLR9 and bind the nucleic acid ligands, single-stranded RNA, and CpG DNA. Collectively, these data suggest that, like human RBCs, bat erythrocytes possess immune function and may be reservoirs for nucleic acids. These findings provide unique insight into bat immunity and may uncover potential mechanisms by which virulent pathogens in humans are concealed in bats.


Sign in / Sign up

Export Citation Format

Share Document