scholarly journals The Role of CD4+ Resident Memory T Cells in Local Immunity in the Mucosal Tissue – Protection Versus Pathology –

2021 ◽  
Vol 12 ◽  
Author(s):  
Kiyoshi Hirahara ◽  
Kota Kokubo ◽  
Ami Aoki ◽  
Masahiro Kiuchi ◽  
Toshinori Nakayama

Memory T cells are crucial for both local and systemic protection against pathogens over a long period of time. Three major subsets of memory T cells; effector memory T (TEM) cells, central memory T (TCM) cells, and tissue-resident memory T (TRM) cells have been identified. The most recently identified subset, TRM cells, is characterized by the expression of the C-type lectin CD69 and/or the integrin CD103. TRM cells persist locally at sites of mucosal tissue, such as the lung, where they provide frontline defense against various pathogens. Importantly, however, TRM cells are also involved in shaping the pathology of inflammatory diseases. A number of pioneering studies revealed important roles of CD8+ TRM cells, particularly those in the local control of viral infection. However, the protective function and pathogenic role of CD4+ TRM cells that reside within the mucosal tissue remain largely unknown. In this review, we discuss the ambivalent feature of CD4+ TRM cells in the protective and pathological immune responses. We also review the transcriptional and epigenetic characteristics of CD4+ TRM cells in the lung that have been elucidated by recent technical approaches. A better understanding of the function of CD4+ TRM cells is crucial for the development of both effective vaccination against pathogens and new therapeutic strategies for intractable inflammatory diseases, such as inflammatory bowel diseases and chronic allergic diseases.

Blood ◽  
2010 ◽  
Vol 115 (11) ◽  
pp. 2203-2213 ◽  
Author(s):  
Dalya R. Soond ◽  
Elisa Bjørgo ◽  
Kristine Moltu ◽  
Verity Q. Dale ◽  
Daniel T. Patton ◽  
...  

Abstract We have previously described critical and nonredundant roles for the phosphoinositide 3-kinase p110δ during the activation and differentiation of naive T cells, and p110δ inhibitors are currently being developed for clinical use. However, to effectively treat established inflammatory or autoimmune diseases, it is important to be able to inhibit previously activated or memory T cells. In this study, using the isoform-selective inhibitor IC87114, we show that sustained p110δ activity is required for interferon-γ production. Moreover, acute inhibition of p110δ inhibits cytokine production and reduces hypersensitivity responses in mice. Whether p110δ played a similar role in human T cells was unknown. Here we show that IC87114 potently blocked T-cell receptor–induced phosphoinositide 3-kinase signaling by both naive and effector/memory human T cells. Importantly, IC87114 reduced cytokine production by memory T cells from healthy and allergic donors and from inflammatory arthritis patients. These studies establish that previously activated memory T cells are at least as sensitive to p110δ inhibition as naive T cells and show that mouse models accurately predict p110δ function in human T cells. There is therefore a strong rationale for p110δ inhibitors to be considered for therapeutic use in T-cell–mediated autoimmune and inflammatory diseases.


2016 ◽  
Vol 31 (12) ◽  
pp. 2131-2142 ◽  
Author(s):  
Claudia Curci ◽  
Fabio Sallustio ◽  
Grazia Serino ◽  
Giuseppe De Palma ◽  
Mirko Trpevski ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Konstantin Carlberg ◽  
Marina Korotkova ◽  
Ludvig Larsson ◽  
Anca I. Catrina ◽  
Patrik L. Ståhl ◽  
...  

AbstractLately it has become possible to analyze transcriptomic profiles in tissue sections with retained cellular context. We aimed to explore synovial biopsies from rheumatoid arthritis (RA) and spondyloarthritis (SpA) patients, using Spatial Transcriptomics (ST) as a proof of principle approach for unbiased mRNA studies at the site of inflammation in these chronic inflammatory diseases. Synovial tissue biopsies from affected joints were studied with ST. The transcriptome data was subjected to differential gene expression analysis (DEA), pathway analysis, immune cell type identification using Xcell analysis and validation with immunohistochemistry (IHC). The ST technology allows selective analyses on areas of interest, thus we analyzed morphologically distinct areas of mononuclear cell infiltrates. The top differentially expressed genes revealed an adaptive immune response profile and T-B cell interactions in RA, while in SpA, the profiles implicate functions associated with tissue repair. With spatially resolved gene expression data, overlaid on high-resolution histological images, we digitally portrayed pre-selected cell types in silico. The RA displayed an overrepresentation of central memory T cells, while in SpA effector memory T cells were most prominent. Consequently, ST allows for deeper understanding of cellular mechanisms and diversity in tissues from chronic inflammatory diseases.


Blood ◽  
2012 ◽  
Vol 120 (24) ◽  
pp. 4761-4771 ◽  
Author(s):  
Keiko Wakahara ◽  
Nobuyasu Baba ◽  
Vu Quang Van ◽  
Philippe Bégin ◽  
Manuel Rubio ◽  
...  

Abstract Basophils are a rare population of granulocytes that have long been associated with IgE-mediated and Th2-associated allergic diseases. However, the role of basophils in Th17 and/or Th1 diseases has not been reported. In the present study, we report that basophils can be detected in the mucosa of Th17-associated lung and inflammatory bowel disease and accumulate in inflamed colons containing large quantities of IL-33. We also demonstrate that circulating basophils increased memory Th17 responses. Accordingly, IL-3– or IL-33–activated basophils amplified IL-17 release in effector memory T cells (TEM), central memory T cells (TCM), and CCR6+ CD4 T cells. More specifically, basophils promoted the emergence of IL-17+IFN-γ− and IL-17+IFN-γ+, but not IL-17−IFN-γ+ CD4 T cells in TEM and TCM. Mechanistic analysis revealed that the enhancing effect of IL-17 production by basophils in TEM involved the ERK1/2 signaling pathway, occurred in a contact-independent manner, and was partially mediated by histamine via H2 and H4 histamine receptors. The results of the present study reveal a previously unknown function for basophils in augmenting Th17 and Th17/Th1 cytokine expression in memory CD4 T cells. Because basophils accumulated in inflamed inflammatory bowel disease tissues, we propose that these cells are key players in chronic inflammatory disorders beyond Th2.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3243-3243
Author(s):  
Kazuaki Yokoyama ◽  
Tokiko Nagamura-Inoue ◽  
Shin Nakayama ◽  
Ikuo Ishige ◽  
Kazuo Ogami ◽  
...  

Abstract CD26 is a transmembrane glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity as well as costimulatory activity of mitotic signals triggered by the CD3/TCR complex. Based on the expression level of CD26, CD4+ and CD8+ T cells can be divided into 3 (high/intermediate/low or negative) subsets. The significance of CD26 has been studied mainly on CD4+ T cells, and CD26highCD4+ T cells are considered to represent effector memory T cells of a typical Th1 phenotype producing IL2 and IFNg. Furthermore, we reported a significant decrease of this subset in CML patients under imatinib therapy in comparison to those under IFNa therapy and normal volunteers. In contrast, the role of each subset of CD8+ T cells has not yet been clarified. Multi-parameter flow cytometry analysis was performed to characterize CD8+ T cells differentially expressing CD26 in combination with intracellular detection of effector molecules such as perforin (P) and granzyme B (Gr). The capacity to secrete effector cytokines such as IFNg following short-term stimulation was also assessed. As a result, according to the expression level of CD26, we could clearly categorize CD8+ T cells as follows: CD26highCD8+ T cells are defined as central memory T cells which has a phenotype of CD45RO+CD28+CD27+ IFNg+Gr−P+/−, CD26intCD8+ T cells as naïve T cells of CD45ROCD28+ CD27+ IFNg−Gr−P−, and CD26lowCD8+ T cells as effector memory/effector T cells of CD45RO−/+ CD28−CD27−IFNg++Gr++P++, respectively. We next investigated the effects of imatinib on 3 distinct subsets during CD8+ T cell differentiation program. Peripheral blood mononuclear cells were primed with anti-CD3/CD28 MAb and subjected to the grading doses of imatinib for short term culture, followed by flow cytometory. CFSE labeling was used for monitoring cell proliferation. Intriguingly, we found that imatinib dose-dependently inhibits activation, cytokine production and proliferation of CD26highCD8+ central memory T cell subsets in a differentiation stage-specific manner. Finally, we compared the absolute number of peripheral blood CD26highCD8+ T cell subsets between 20 patients with CML in imatinib-induced CCR and 20 normal volunteers, clearly indicating a significant decrease of this subset in CML patients (22.30/ml vs 45.60/ml, p<0.01). The present study offers another evidence for immunomodulatory effects of imatinib or the critical role of Abl (-related) kinase in T cell development, and draws special attention to susceptibility to viral infection of CML patients under long-term imatinib therapy. Figure Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 233-233
Author(s):  
Kathryn N Wilkinson ◽  
Britt Anderson ◽  
Jennifer McNiff ◽  
Anthony Jake Demetris ◽  
Warren D. Shlomchik ◽  
...  

Abstract Abstract 233 Graft versus host disease (GVHD) remains a major cause of morbidity and mortality in allogeneic stem cell transplantation (alloSCT). In murine models of alloSCT, effector memory (EM) T cells engraft, respond to antigen, and mediate graft versus leukemia, but do not cause GVHD. There are three potential explanations for EM T cells' inability to cause GVHD. First, unlike naïve T cells, EM T cells fail to traffic to lymph nodes and Peyer patches, areas which may be important for initiation of GVHD. Second, a more-restricted T cell receptor repertoire in the EM T cell pool may lead to a reduced ability to recognize alloantigens. Third, it is possible that EM T cells do not possess the necessary effector mechanisms or are incapable of the proliferation or survival required for induction of GVHD. We recently reported that the inability to migrate to lymph nodes and Peyer patches is not responsible for the inability of EM T cells to cause GVHD (Anderson et al, Blood. 2008). To date, the role of repertoire has been difficult to test because in existing models of GVHD the disease causing T cells are undefined. Furthermore, whether central memory (CM) CD4 T cells are also incapable of causing GVHD remains unclear, in part because it has been difficult to isolate pure populations of polyclonal CM CD4 T cells. In order to concurrently address the role of repertoire and determine if CM CD4 T cells can cause GVHD, we developed a novel T cell receptor transgenic GVHD model. In this model naïve CD4+ TS1 T cells on a RAG-deficient background, which recognize an epitope of influenza hemagglutinin (HA), are transferred, along with syngeneic bone marrow, into irradiated transgenic recipients that express HA in all tissues (HA104 mice). Within a week post transplant, HA104 recipients of naïve TS1 cells developed a GVHD-like condition characterized by weight loss, visible wasting, and pathology of the skin, colon, and liver. An advantage of this model is that the disease causing T cells are defined, enabling us to determine if naïve and memory T cells of identical specificity have inherent differences in their ability to cause GVHD. We generated memory TS1 cells using in vitro stimulation followed by transfer into RAG−/− mice, according to Farber and colleagues (Ahmadzadeh et al. PNAS 2002). After 2 to 3 months, pure populations of CD62L+ CM TS1 cells and CD62L- EM TS1 cells were isolated by FACS. Upon transfer into irradiated HA104 recipients, EM TS1 cells initially did not cause disease symptoms, however, 30 days post transplant, EM TS1 recipients developed mild weight loss. These results indicate that repertoire differences are not responsible for the inability of EM T cells to cause GVHD. Interestingly, CM TS1 cells caused more weight loss than EM T cells, though not as much as that caused by naïve TS1 cells. These findings indicate that, independent of repertoire, CM T cells are also inherently limited in their ability to cause GVHD, though they are not as disabled in this respect as EM T cells. A major issue in GVHD work has been the inability to track, quantify and characterize the actual alloreactive GVHD-inducing T cells. With a TCR transgenic model, this is now possible and we are currently exploiting this feature to determine the fate of naïve, EM, and CM T cells after transfer. Initial experiments demonstrated that, in comparison to naïve and CM TS1 cell recipients, the secondary lymph nodes of EM TS1 cell recipients contained fewer TS1 cells 60 days post transplant, suggesting that in the context of GVHD, EM cells are inherently limited in their ability to expand or survive. We are currently tracking naïve, EM and CM TS1 cells throughout the course of a GVHD experiment, and assessing how, when, and where the fates of these cell types diverge. Results from these ongoing experiments will be presented. Disclosures: No relevant conflicts of interest to declare.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Hana A Itani ◽  
Feng Zhang ◽  
Liang Xiao ◽  
Wei Chen ◽  
David G Harrison

Immunological memory is an important component of the adaptive immune response to pathogenic stimuli. Effector memory T cells, which are CD44high CD62Llow, reside in various non-lymphoid tissues and serve as a first line defense against foreign antigens. We have previously shown that T cells are important in hypertension, but the role of memory T cells has not been defined. Thus we hypothesized that CD8+ memory T cells are component of this memory response. To test this hypothesis, mice initially received two weeks of ang II, were allowed to recover for 3 weeks and were then re-infused with low dose of ang II (140 ng/kg/min) that minimally raises blood pressure in naïve mice. This low-dose of ang II increased blood pressure to 137±6 mmHg in mice that had previously received a vehicle infusion, but to 172±12 mmHg in mice that had received ang II. In keeping with a memory T cell response, we found that angiotensin II causes a 5 to 10-fold increase in CD8+ CD62Lhigh/CD44high/CCR7+ central memory cells in the kidney while reducing these effector memory CD8+ T cells in the spleen. CD8+ memory T cells require co-stimulatory signaling between CD70 on macrophages and CD27 on T cells. We found that angiotensin II infusion increased CD70 mRNA in isolated kidney vessels by 5 to 10-fold. Similarly, flow cytometry revealed that angiotensin II increased macrophages expressing CD70 and CD8+ T cells expressing CD27 expression in the kidney. Thus, these studies indicate that repeated exposures to angiotensin II promote an immune memory response of CD8+ T cells and markedly enhance the hypertensive response to this octapeptide. The role of CD27 and CD70 signaling requires additional study but might serve as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document