scholarly journals Metabolic Regulation of Thymic Epithelial Cell Function

2021 ◽  
Vol 12 ◽  
Author(s):  
Manpreet K. Semwal ◽  
Nicholas E. Jones ◽  
Ann V. Griffith

The thymus is the primary site of T lymphocyte development, where mutually inductive signaling between lymphoid progenitors and thymic stromal cells directs the progenitors along a well-characterized program of differentiation. Although thymic stromal cells, including thymic epithelial cells (TECs) are critical for the development of T cell-mediated immunity, many aspects of their basic biology have been difficult to resolve because they represent a small fraction of thymus cellularity, and because their isolation requires enzymatic digestion that induces broad physiological changes. These obstacles are especially relevant to the study of metabolic regulation of cell function, since isolation procedures necessarily disrupt metabolic homeostasis. In contrast to the well-characterized relationships between metabolism and intracellular signaling in T cell function during an immune response, metabolic regulation of thymic stromal cell function represents an emerging area of study. Here, we review recent advances in three distinct, but interconnected areas: regulation of mTOR signaling, reactive oxygen species (ROS), and autophagy, with respect to their roles in the establishment and maintenance of the thymic stromal microenvironment.

Author(s):  
Alexandra Y. Kreins ◽  
Stefano Maio ◽  
Fatima Dhalla

AbstractAs the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.


Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 3803-3811 ◽  
Author(s):  
Simona W. Rossi ◽  
Lukas T. Jeker ◽  
Tomoo Ueno ◽  
Sachiyo Kuse ◽  
Marcel P. Keller ◽  
...  

Abstract The systemic administration of keratinocyte growth factor (KGF) enhances T-cell lymphopoiesis in normal mice and mice that received a bone marrow transplant. KGF exerts protection to thymic stromal cells from cytoablative conditioning and graft-versus-host disease–induced injury. However, little is known regarding KGF's molecular and cellular mechanisms of action on thymic stromal cells. Here, we report that KGF induces in vivo a transient expansion of both mature and immature thymic epithelial cells (TECs) and promotes the differentiation of the latter type of cells. The increased TEC numbers return within 2 weeks to normal values and the microenvironment displays a normal architectural organization. Stromal changes initiate an expansion of immature thymocytes and permit regular T-cell development at an increased rate and for an extended period of time. KGF signaling in TECs activates both the p53 and NF-κB pathways and results in the transcription of several target genes necessary for TEC function and T-cell development, including bone morphogenetic protein 2 (BMP2), BMP4, Wnt5b, and Wnt10b. Signaling via the canonical BMP pathway is critical for the KGF effects. Taken together, these data provide new insights into the mechanism(s) of action of exogenous KGF on TEC function and thymopoiesis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5092-5092
Author(s):  
Hui Gai ◽  
Rafa Gras~Pena ◽  
Yogendra Verma ◽  
Vincent Fateh ◽  
Kazuya Ikeda ◽  
...  

Abstract The thymus is a primary lymphoid organ that plays a critical role in the development of adaptive T cell immunity and central tolerance. Bone marrow-derived lymphoid progenitor cells migrate into the thymus and interact with thymic epithelial cells (TECs) through sequential positive and negative selection to mature. Thymus-educated mature T cells express a diverse, MHC-restricted and self-tolerant T cell receptor (TCR) repertoire that protects against infection and prevents autoimmunity. Patients born with congenital thymic aplasia, due to 22q11 Deletion Syndrome, or mutations in TBX1, FOXN1 or CHD7, present with complete absence of T cells and a severe combined immunodeficiency (SCID)-like phenotype. Bone marrow transplantation does not cure the thymic defect in these patients and severe infections occur within the first year of life if left untreated. Allogenic thymus transplantation has provided proof of principle that HLA-unmatched pediatric donor thymic tissues can lead to successful immune reconstitution with the emergence of a diverse TCR V-beta repertoire. However, post-transplant organ-specific autoimmunity remains a major concern. Currently allogeneic thymus transplantation is no longer available in the US leaving a deadly therapeutic void for patients born without thymus. Patient-specific or histocompatible thymic tissues derived from pluripotent stem cells could address the critically unmet need, and also a broader range of clinical applications including immune reconstitution post hematopoietic stem cell transplantation (HSCT) and tolerance induction for solid donor organs. The thymus contains two major non-hematological components: the thymic stromal cells and the extracellular matrix (ECM). The thymic stromal layer is composed of thymic epithelial cells and mesenchymal cells. The thymic ECM forms a three-dimensional (3D) network to provide physical support and nutrition to thymic stromal cells. Methods: To address the need for histocompatible regenerative thymic tissues, we aim to differentiate fully functional thymic epithelial progenitor cells (TEPCs) from human pluripotent stem cells (hPSCs) and further generate 3D transplantable organoids using engineered matrix proteins that mimic the native thymic microenvironment. Results: We have developed a novel platform to generate hPSC-derived TEPCs by dissecting the key signaling pathways that govern human thymic ontogeny. These hPSC-derived TEPCs express the defining markers of TEPC-fate, such as FoxN1, Cytokeratin 8, Cytokeratin 5, Delta-like Canonical Notch Ligand 4 (DLL4) and MHC class II. Previous studies have shown FoxN1 to be the master regulator controlling thymic development, however, little is known about its regulatory network. Elucidating and validating the factors that initiate and maintain FoxN1 expression is the key to successfully engineer sustainable thymic tissues. We have identified a combination of morphogens that can maintain the expression of FoxN1, DLL4 and AIRE of primary TECs in culture. To gain insight into the composition of primary thymic ECM proteins and adapt their characteristics beyond the features of commercially available 3D hydrogels, we analyzed a series of human fetal thymic tissues using whole transcriptome analysis. Our current work focuses on adapting our 2D culture protocol to sustain hPSC-TEPCs in 3D matrix-based organoids. Ongoing studies test the capacity of hPSC-TECPs to promote T cell maturation and the development of a diverse TCR repertoire in an athymic xenograft mouse model (NSG-FoxN1null). Conclusions: hPSC can be differentiated in vitro into TEPC-fate and developed into thymic organoids using custom-designed protein matrices. Studies to test sustainability and functionality of the engineered thymic organoids in vivo are currently under way. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Shami Chakrabarti ◽  
Mohammed Hoque ◽  
Nawshin Zara Jamil ◽  
Varan J Singh ◽  
Neelab Meer ◽  
...  

AbstractIn paradox to critical functions for T-cell selection and self-tolerance, the thymus undergoes profound age-associated atrophy and loss of T-cell function, which are further enhanced by cancer therapies. Identification of thymic epithelial progenitor populations capable of forming functional thymic tissue will be critical in understanding thymic epithelial cell (TEC) ontogeny and designing strategies to reverse involution. We identified a new population of progenitor cells, present in both thymus and bone marrow (BM), that co-express the hematopoietic marker CD45 and the definitive thymic epithelial marker EpCAM and maintains the capacity to form functional thymic tissue. Confocal analysis and qRT-PCR of sorted cells from both BM and thymus confirmed co-expression of CD45 and EpCAM. Grafting of C57BL/6 fetal thymi under the kidney capsule of H2BGFP transgenic mice revealed that peripheral CD45+ EpCAM+ GFP-expressing cells migrate into the developing thymus and contribute to both TECs and FSP1-expressing stroma. Sorted BM-derived CD45+EpCAM+ cells contribute to reaggregate thymic organ cultures (RTOCs) and differentiate into keratin and FoxN1 expressing TECs, demonstrating that BM cells can contribute to the maintenance of TEC microenvironments previously thought to be derived solely from endoderm. BM-derived CD45+EpCAM+ cells represent a new source of progenitor cells that contribute to thymic homeostasis. Future studies will characterize the contribution of BM-derived CD45+EpCAM+ TEC progenitors to distinct functional TEC microenvironments in both the steady-state thymus and under conditions of demand. Cell therapies utilizing this population may prove useful for counteracting thymic involution in cancer patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 68-68
Author(s):  
Susan Prockop ◽  
Sotiris Nikolopoulos ◽  
Aaron Myers ◽  
Filipo Giancotti ◽  
Howard T. Petrie ◽  
...  

Abstract Despite recovery of most hematopoietic functions, prolonged defects in generating functional T lymphocytes is a common occurrence after T cell depleted bone marrow transplant. While the mechanisms of these defects have not all been elucidated, contributing factors include age, T cell depletion of the graft, therapy with radiation and cytotoxic agents, and graft versus host disease (GvHD). We have designed an in vivo functional assessment of the ability of thymic stroma to support de novo T lymphocyte development. Mice deficient for the alpha chain of the IL-7 receptor (IL7Rα−/−) support robust thymic reconstitution after transplant of limited numbers of congenic precursors. We demonstrated that this capacity for reconstitution of immunodeficient strains depends on the paucity of specific endogenous precursors (DN3) cells in the IL7Rα−/− thymus and reflects the presence of functionally normal but empty stromal niches in this immunodeficient strain. We have proceeded to demonstrate that a variety of chemotherapeutic agents as well as aging, impair the ability of IL7Rα−/− thymic stroma to support de novo T cell development. Some agents allow donor chimerism in the thymus, but not rescue of the hypocellularity (eg cyclophosphamide) while others do not affect reconstitution (eg fludarabine). Multi-agent regimens have been administered and in some instances demonstrate an additive detrimental impact on thymic reconstitution. For several agents, damage has been localized to specific stromal niches by isolating changes in lymphoid subsets and stromal keratin expression. Decreased availability of the stromal niche for DN3 progenitors is associated with a decreased frequency of DN3s and an absolute block in recipient IL7Rα−/− T cell development. In addition, RNA from treated and untreated thymic stromal cells has been used to evaluate the gene expression pattern in thymic stroma of IL7Rα−/− mice treated with cytotoxic agents. In one example to be presented we find decreased thymic reconstitution in mice treated with Busulfan with sustained changes in stromal elements. These findings are consistent with sustained damage to thymic stromal cells. Among other changes, busulfan leads to decreased expression of laminin 5 by cortical thymic epithelial cells. The integrin heterodimerα6β4 is a binding partner for laminin 5 and is expressed uniformly by DN2 thymocytes. The significance of laminin 5/α6β4 signaling during T cell development was assessed using mice with a targeted mutation in the integrin β4 signaling domain. In these experiments mutant fetal liver was used to create hematopoietic chimeras and evaluate T cell development. Our studies provide insight into the nature of damage to thymic stroma by cytotoxic regimens and an understanding of the effect of this damage on subsequent immune reconstitution.


2007 ◽  
Vol 81 (22) ◽  
pp. 12504-12514 ◽  
Author(s):  
Derek D. Sloan ◽  
Keith R. Jerome

ABSTRACT Herpes simplex virus (HSV)-specific T cells are essential for viral clearance. However, T cells do not prevent HSV latent infection or reactivation, suggesting that HSV has the potential to modulate T-cell function. T-cell receptor (TCR) stimulation is a potent and specific means of activating T cells. To investigate how HSV affects T-cell function, we have analyzed how HSV affects TCR-stimulated intracellular signaling and cytokine synthesis in mock-infected and HSV-infected T cells. Mock-infected T cells stimulated through the TCR synthesized a broad range of cytokines that included the proinflammatory cytokines tumor necrosis factor alpha, gamma interferon, and interleukin-2. In contrast, HSV-infected T cells stimulated through the TCR selectively synthesized interleukin-10, a cytokine that suppresses cellular immunity and favors viral replication. To achieve selective interleukin-10 synthesis, HSV differentially affected TCR signaling pathways. HSV inhibited TCR-stimulated formation of the linker for activation of the T-cell signaling complex, and HSV inhibited TCR-stimulated NF-κB activation. At the same time, HSV activated the p38 and JNK mitogen-activated protein kinases as well as the downstream transcription factors ATF-2 and c-Jun. HSV did not inhibit TCR-stimulated activation of STAT3, a transcription factor involved in interleukin-10 synthesis. The activation of p38 was required for interleukin-10 synthesis in HSV-infected T cells. The ability of HSV to differentially target intracellular signaling pathways and transform an activating stimulus into an immunosuppressive response represents a novel strategy for pathogen-mediated immune modulation. Selective, TCR-stimulated interleukin-10 synthesis may play an important role in HSV pathogenesis.


2003 ◽  
Vol 198 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Dong-Gyun Lim ◽  
Jacqueline M. Slavik ◽  
Katarzyna Bourcier ◽  
Kathrine J. Smith ◽  
David A. Hafler

T cell receptors recognize small changes in peptide ligands leading to different T cell responses. Here, we analyzed a panel of HLA-A2–Tax11-19 reactive T cell clones to examine how small allelic variations of MHC molecules could alter the functional outcome of antigen recognition. Similar to the effects induced by antigenic altered peptide ligands, weak or partial agonistic T cell functions were identified in individual T cell clones with the recognition of MHC-altered peptide ligands (MAPLs). Interestingly, one subtype of HLA-A2 molecules induced an unusual type of partial agonistic function; proliferation without cytotoxicity. Modeling of crystallographic data indicated that polymorphic amino acids in the HLA-A2 peptide binding groove, especially the D-pocket, were responsible for this partial agonism. Reciprocal mutations of the Tax peptide side chain engaging the D-pocket indeed restored the agonist functions of the MHC–peptide complex. Whereas early intracellular signaling events were not efficiently induced by these MAPLs, phosphorylated c-Jun slowly accumulated with sustained long-term expression. These data indicate that MAPLs can induce atypical partial agonistic T cell function through structural and biochemical mechanisms similar to altered peptide ligands.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2940
Author(s):  
Federica Marchesi ◽  
Debora Vignali ◽  
Beatrice Manini ◽  
Alessandra Rigamonti ◽  
Paolo Monti

The orchestration of T cell responses is intimately linked to the execution of metabolic processes, both in homeostasis and disease. In cancer tissues, metabolic alterations that characterize malignant transformation profoundly affect the composition of the immune microenvironment and the accomplishment of an effective anti-tumor response. The growing understanding of the metabolic regulation of immune cell function has shed light on the possibility to manipulate metabolic pathways as a strategy to improve T cell function in cancer. Among others, glucose metabolism through the glycolytic pathway is central in shaping T cell responses and emerges as an ideal target to improve cancer immunotherapy. However, metabolic manipulation requires a deep level of control over side-effects and development of biomarkers of response. Here, we summarize the metabolic control of T cell function and focus on the implications of metabolic manipulation for the design of immunotherapeutic strategies. Integrating our understanding of T cell function and metabolism will hopefully foster the forthcoming development of more effective immunotherapeutic strategies.


1984 ◽  
Vol 4 (4) ◽  
pp. 209-211 ◽  
Author(s):  
Franca Giacchino ◽  
M. Pozzato ◽  
M. Formica ◽  
F. Quarello ◽  
G. Piccoli

T -cell subsets were classified by monoclonal antibodies (OKT3 -peripheral mature T cells; OKT4 helper/inducer; OKT8 -cytotoxic/ suppressor) in CAPD and hemodialysis patients. Data were compared with in vivo assays of T cell function, such as DNCB and PPD skin tests. Uremic patients had significant absolute lymphopenia; when the results were expressed as a percentage of OKT3+ cells, they did not differ from the controls. When they suffered from peritonitis, CAPD patients showed an increase in OKT8+ cells, but the ratio ocOKT4+ cells to OKT8+ cells showed no significant deviation from the normal population. On the other hand, CAPD patients showed a better response to DNCB and PPD antigens. In the hemodialysis patients there was a significant correlation between the negative response to the DNCB test and blood transfusion. There was no correlation between the immune response and the primary disease, or the nutritional status in either groups.


Immunotherapy ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 335-345 ◽  
Author(s):  
Anna Schurich ◽  
Isabelle Magalhaes ◽  
Jonas Mattsson

Sign in / Sign up

Export Citation Format

Share Document