scholarly journals TIGIT and PD-1 Immune Checkpoint Pathways Are Associated With Patient Outcome and Anti-Tumor Immunity in Glioblastoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Itay Raphael ◽  
Rajeev Kumar ◽  
Lauren H. McCarl ◽  
Karsen Shoger ◽  
Lin Wang ◽  
...  

Glioblastoma (GBM) remains an aggressive brain tumor with a high rate of mortality. Immune checkpoint (IC) molecules are expressed on tumor infiltrating lymphocytes (TILs) and promote T cell exhaustion upon binding to IC ligands expressed by the tumor cells. Interfering with IC pathways with immunotherapy has promoted reactivation of anti-tumor immunity and led to success in several malignancies. However, IC inhibitors have achieved limited success in GBM patients, suggesting that other checkpoint molecules may be involved with suppressing TIL responses. Numerous IC pathways have been described, with current testing of inhibitors underway in multiple clinical trials. Identification of the most promising checkpoint pathways may be useful to guide the future trials for GBM. Here, we analyzed the The Cancer Genome Atlas (TCGA) transcriptomic database and identified PD1 and TIGIT as top putative targets for GBM immunotherapy. Additionally, dual blockade of PD1 and TIGIT improved survival and augmented CD8+ TIL accumulation and functions in a murine GBM model compared with either single agent alone. Furthermore, we demonstrated that this combination immunotherapy affected granulocytic/polymorphonuclear (PMN) myeloid derived suppressor cells (MDSCs) but not monocytic (Mo) MDSCs in in our murine gliomas. Importantly, we showed that suppressive myeloid cells express PD1, PD-L1, and TIGIT-ligands in human GBM tissue, and demonstrated that antigen specific T cell proliferation that is inhibited by immunosuppressive myeloid cells can be restored by TIGIT/PD1 blockade. Our data provide new insights into mechanisms of GBM αPD1/αTIGIT immunotherapy.

2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098153
Author(s):  
Qing Bi ◽  
Yang Liu ◽  
Tao Yuan ◽  
Huizhen Wang ◽  
Bin Li ◽  
...  

Objective The role of tumor-infiltrating lymphocytes (TILs) has not yet been characterized in sarcomas. The aim of this bioinformatics study was to explore the effect of TILs on sarcoma survival and genome alterations. Methods Whole-exome sequencing, transcriptome sequencing, and survival data of sarcoma were obtained from The Cancer Genome Atlas. Immune infiltration scores were calculated using the Tumor Immune Estimation Resource. Potential associations between abundance of infiltrating TILs and survival or genome alterations were examined. Results Levels of CD4+ T cell infiltration were associated with overall survival of patients with pan-sarcomas, and higher CD4+ T cell infiltration levels were associated with better survival. Somatic copy number alterations, rather than mutations, were found to correlate with CD4+ T cell infiltration levels. Conclusions This data mining study indicated that CD4+ T cell infiltration levels predicted from RNA sequencing could predict sarcoma prognosis, and higher levels of CD4+ T cells infiltration indicated a better chance of survival.


2019 ◽  
Vol 21 (6) ◽  
pp. 730-741 ◽  
Author(s):  
Aida Karachi ◽  
Changlin Yang ◽  
Farhad Dastmalchi ◽  
Elias J Sayour ◽  
Jianping Huang ◽  
...  

Abstract Background The changes induced in host immunity and the tumor microenvironment by chemotherapy have been shown to impact immunotherapy response in both a positive and a negative fashion. Temozolomide is the most common chemotherapy used to treat glioblastoma (GBM) and has been shown to have variable effects on immune response to immunotherapy. Therefore, we aimed to determine the immune modulatory effects of temozolomide that would impact response to immune checkpoint inhibition in the treatment of experimental GBM. Methods Immune function and antitumor efficacy of immune checkpoint inhibition were tested after treatment with metronomic dose (MD) temozolomide (25 mg/kg × 10 days) or standard dose (SD) temozolomide (50 mg/kg × 5 days) in the GL261 and KR158 murine glioma models. Results SD temozolomide treatment resulted in an upregulation of markers of T-cell exhaustion such as LAG-3 and TIM-3 in lymphocytes which was not seen with MD temozolomide. When temozolomide treatment was combined with programmed cell death 1 (PD-1) antibody therapy, the MD temozolomide/PD-1 antibody group demonstrated a decrease in exhaustion markers in tumor infiltrating lymphocytes that was not observed in the SD temozolomide/PD-1 antibody group. Also, the survival advantage of PD-1 antibody therapy in a murine syngeneic intracranial glioma model was abrogated by adding SD temozolomide to treatment. However, when MD temozolomide was added to PD-1 inhibition, it preserved the survival benefit that was seen by PD-1 antibody therapy alone. Conclusion The peripheral and intratumoral immune microenvironments are distinctively affected by dose modulation of temozolomide.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A536-A536
Author(s):  
Juan Dong ◽  
Cassandra Gilmore ◽  
Hieu Ta ◽  
Keman Zhang ◽  
Sarah Stone ◽  
...  

BackgroundV-domain immunoglobulin suppressor of T cell activation (VISTA) is a B7 family inhibitory immune checkpoint protein and is highly expressed on myeloid cells and T cells.1 VISTA acts as both an inhibitory ligand when expressed on antigen-presenting cells and a receptor when expressed on T cells. Our recent study has shown that VISTA is a myeloid cell-specific immune checkpoint and that blocking VISTA can reprogram suppressive myeloid cells and promote a T cell-stimulatory tumor microenvironment.2 In this study, we further demonstrate that VISTA blockade directly alters the differentiation and the suppressive function of myeloid-derived suppressor cells (MDSC).MethodsFlow cytometry was performed to examine VISTA expression on MDSCs in multiple murine tumor models including the B16BL6 melanoma model, MC38 colon cancer model, and the KPC pancreatic cancer models. To examine the role of VISTA in controlling the differentiation and suppressive function of MDSCs, we cultured wild type (WT) and VISTA.KO bone marrow progenitor cells with GM-CSF and IL-6 to induce BM -derived MDSCs.ResultsOur preliminary results show that VISTA is highly expressed on M-MDSCs in B16BL6, MC38 and KPC tumors. In BM-derived MDSCs, VISTA deletion significantly altered the signaling pathways and the differentiation of MDSCs. Multiple inflammatory signaling pathways were downregulated in VISTA KO MDSCs, resulting in decreased production of cytokines such as IL1 and chemokines such as CCL2/4/9, as well as significantly impaired their ability to suppress the activation of CD8+ T cells. The loss of suppressive function in VISTA KO MDSCs is correlated with significantly reduced expression of iNOS. To validate the results from BM-MDSCs, we sorted CD11b+CD11c-Ly6C+Ly6G- M-MDSCs and CD11b+CD11c-Ly6G+ G-MDSCs from B16BL6 tumor tissues and tested the ability of a VISTA-blocking mAb to reverse the suppressive effects of tumor-derived MDSCs. Our results show that blocking VISTA impaired the suppressive function of tumor-derived M-MDSC but not G-MDSCs.ConclusionsTaken together, these results demonstrate a crucial role of VISTA in regulating the differentiation and function of MDSCs, and that blocking VISTA abolishes MDSC-mediated T cell suppression, thereby boosting.Ethics ApprovalAll in vivo studies were reviewed and approved by Institutional Animal Care and Use Committee (Approval number 2019-2142).ReferencesXu W, Hire T, Malarkannan, S. et al. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 2018;15:438–446.Xu W, Dong J, Zheng Y, et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol Res 2019;7:1497–510.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A625-A625
Author(s):  
Natalia Reszka-Blanco ◽  
Megan Krumpoch ◽  
Michaela Mentzer ◽  
Vinod Yadav Yadav ◽  
Brianna Bannister ◽  
...  

BackgroundIntegrin αvβ8 activates TGFβ in immune cells. αvβ8 inhibitors have been shown to potentiate immune checkpoint blockade (ICB) in preclinical models [1]. Radioimmunotherapy (RIT) induces immunogenic cell death and antigen presentation, however it concurrently activates immunosuppressive pathways. Interestingly, αvβ8 immunosuppressive activity was implicated in radiotherapy resistance [2]. We have explored whether antagonizing αvβ8 overcomes the suppressive effect of TGFβ and restores anti-tumor immunity in advanced ICB and RIT resistant tumors.MethodsEfficacy was evaluated after combination treatment with low dose radiation, αvβ8 (clone C6D4) and PD-1 (clone J43) mAb in an advanced CT26 colon cancer syngeneic mouse model. Mice were treated at tumor volume of >120 mm3 and euthanized at 2,000 mm3. Flow cytometry and transcriptomic analysis were used to assess the mechanism of action. Tumor volumes are presented as mean±SEM. Statistics were performed by one-way ANOVA, or log-rank test. Bone marrow derived dendritic cell (BMdDC) cultures were isolated from C57BL/6 mice.ResultsCell death, including radiation-induced apoptosis, induced immunoregulatory and maturation program in a population of ex vivo cultured BMdDC, recently described as mregDC/DC3 [3,4]. mregDC/DC3 signature was associated with increased αvβ8 expression, suggesting a role of this integrin in inducing an immunosuppressive phenotype.A CT26 model was established to mimic the progression of late-stage tumors and was unresponsive to radiation, ICB and RIT. In CT26 implanted mice, αvβ8 is expressed on tumor stoma, and is not detectable on cancer cells. Addition of αvβ8 mAb to RIT markedly increased tumor regression (P=0.0067) and survival (P<0.0001). There were 8/10 complete responders with addition of αvβ8 mAb relative to 3/10 in RIT alone. Improved efficacy correlated with enhanced T cell activation and improved DC functionality. Consistent with a recent report in a less advanced CT26 model [5], αvβ8 mAb + radiation resulted in similar efficacy as conventional RIT although the effect was modest in more advanced tumors (Figure 1, A, B).Abstract 595 Figure 1Complete response (CR) with improved survival when αvβ8 inhibition is added to RIT in CT26 syngeneic model of colorectal cancer in an advanced, ICB and RIT unresponsive stage. (A) Effect of combination therapy with low dose radiation (small animal radiation research platform (SARRP) at 5 Gray (Gy) on the day of staging (day 10)), PD-1 mAb (10 mg/kg twice weekly for 2 weeks) and αvβ8 mAb (7 mg/kg three times weekly for 3 weeks) measured by tumor burden. 5Gy+PD-1 and 5Gy+αvβ8 has a minimal effect on tumor growth inhibition showing slight improvement relative to radiation alone (5Gy+IgG). Addition of αvβ8 antagonism (5Gy+αvβ8+PD-1) improves anti-tumor responses leading to CR in 8 of 10 mice. (B) Kaplan-Meier Curve presenting time to progression. 5Gy+IgG improved survival over monotherapy with either αvβ8 or PD1 mAb. 5Gy+αvβ8+PD-1 resulted in a profound improvement of the survival over all other treatment conditionsConclusionsInhibition of αvβ8 in combination with RIT eradicated an advanced tumor, unresponsive to the respective monotherapies or conventional RIT. The anti-tumor effect was driven by enhancement of adaptive immunity, improvement of DC function and reduced tumor tolerance. These data provide evidence that αvβ8 inhibition enhances RIT and may be effective against ICB refractory tumors.ReferencesReszka-Blanco NJ,Yadav V, Krumpoch M, Cappellucci L, Cui D, Dowling JE, et al., Inhibition of integrin αvβ8 enhances immune checkpoint induced anti-tumor immunity by acting across immunologic synapse in syngeneic models of breast cancer. AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1559.Jin S, Lee WC, Aust D, Pilarsky C, Cordes N, β8 integrin mediates pancreatic cancer cell radiochemoresistance. Mol Cancer Res. 2019; 17(10): 2126–2138.Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, et al., A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 2020; 580 (7802): 257–262.Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, Engblom C, et al., Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018; 49(6): 1148–1161.Dodagatta-Marri E, Ma H-Y, Liang B, Li J, Meyer DS, Chen S-Y, et al., Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Report. 2021; 36(1): 109309Ethics ApprovalAll animal work was approved by the site Institutional Animal Care and Use Committee and was performed in conformance with the Guide for the Care and Use of Laboratory Animals within an AAALAC-accredited program. Humane euthanasia criteria were predetermined on the basis of body weight and defined clinical observations.


2020 ◽  
Author(s):  
W. Ye ◽  
A Olsson-Brown ◽  
R. A. Watson ◽  
V. T. F. Cheung ◽  
R. D. Morgan ◽  
...  

1Abstract1.1BackgroundImmune checkpoint blockers (ICBs) activate CD8+ T cells to elicit anti-cancer activity but frequently lead to immune-related adverse events (irAEs). The relationship of irAE with baseline parameters and clinical outcome is unclear. We investigated associations between irAE development, CD8+ T cell receptor diversity and expression and clinical outcome in a non-trial setting.1.2MethodsPatients ≥18 years old with metastatic melanoma (MM) receiving combination ICB (ipilimumab plus nivolumab – cICB, n=60) or single-agent ICB (nivolumab/pembrolizumab – sICB, n=78) were prospectively recruited. We retrospectively evaluated the impact of irAEs on survival. This analysis was repeated in an independent cohort of MM patients treated at a separate institution (n=210, cICB:74, sICB:136). We performed RNA sequencing of CD8+ T cells isolated from patients prior to treatment, analysing T cell receptor clonality differential transcript expression according to irAE development.1.3Results48.6% of patients experienced treatment-related irAEs within the first 5 cycles of treatment. Development of irAE prior to the 5th cycle of ICB was associated with longer progression-free and overall survival (PFS, OS) in the primary cohort (log-rank test, PFS: P=0.00034; OS: P<0.0001), replicated in the secondary cohort (OS: P=0.00064). Across cohorts median survival for those patients not experiencing irAE was 14.4 (95% CI:9.6-19.5) months vs not-reached (95% CI:28.9 - Inf), P=3.0×10−7. Pre-treatment performance status and neutrophil count, but not BMI, were additional predictors of clinical outcome. Analysis of CD8+ T cells from 128 patients demonstrated irAE development was associated with increased T cell receptor diversity post-treatment (P=4.3×10−5). Development of irAE in sICB recipients was additionally associated with baseline differential expression of 224 transcripts (FDR<0.1), enriched in pro-inflammatory pathway genes including CYP4F3 and PTGS2.1.4ConclusionsEarly irAE development post-ICB is strongly associated with favourable survival in MM and increased diversity of peripheral CD8+ T cell receptors after treatment. irAE post-sICB is associated with pre-treatment upregulation of inflammatory pathways, indicating irAE development may reflect baseline immune activation states.Key messageImmune-related adverse events (irAEs) commonly occur in patients with metastatic melanoma treated with immune checkpoint blockade (ICB) therapy. In real world setting we find development of early irAEs post-ICB treatment is associated with survival benefit, indicative of a shared mechanism with anti-tumour efficacy. CD8+ T cells from patients who develop irAE show increased receptor diversity, and pre-treatment samples from patients who develop irAE post single-agent anti-PD1 show over-expression of inflammatory pathways, indicating baseline immune state can determine irAE development.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Xiao Z Shen ◽  
Peng Shi ◽  
Jorge Giani ◽  
Ellen Bernstein ◽  
Kenneth E Bernstein

The immune system plays a critical role in the development of hypertension. The immune response consists of pro-inflammatory cells, but also immunosuppressive cells that reduce T cell function. An important category of natural immunosuppressive cell is myeloid-derived suppressor cells (MDSC). We now show that blood and spleen CD11b+ Gr1+ myeloid cells are elevated 2-fold in both angiotensin II and L-NAME induced hypertension. These increased myeloid cells are MDSC in that they elevate IL-4R expression and suppress T cell proliferation. When hypertensive mice were depleted of MDSC, using either anti-Gr1 antibody or gemcitabine, there was a 15 mmHg rise in blood pressure and aggravation of T cells activation with increased production of IFN-γ, TNFα and IL-17 in both spleen and kidney. In contrast, adoptive transfer of MDSC reduced blood pressure in angiotensin-II induced hypertension by 25 mmHg (see Figure). These data suggest a new concept, that the accumulation of MDSC is a compensatory response to the inflammation induced by hypertension. They also indicate that MDSC play an important role in regulating blood pressure.


2021 ◽  
Vol 108 (Supplement_7) ◽  
Author(s):  
Noel Donlon ◽  
Maria Davern ◽  
Andrew Sheppard ◽  
John Reynolds ◽  
Joanne Lysaght

Abstract Background Immunotherapy is being intensively investigated for its utilisation in the curative setting as a single agent and in the multimodal setting, however, the most appropriate time to incorporate ICIs remains unknown. Our study profiles systemic anti-tumour immunity perioperatively to provide a rationale for adjuvant immunotherapy. Methods Systemic immunity was immunophenotyped pre and post-oesophagectomy on days 0, 1, 3, 7 and week 6 by flow cytometry (n = 14). The frequency of circulating lymphocytes, T cells, cytotoxic and helper T lymphocytes was profiled longitudinally including the proportion of T cell subsets in circulation. This study also profiled immune checkpoint expression on circulating T cells including: PD-1, CTLA-4, TIGIT, TIM-3, LAG-3, PD-L1 and PD-L2. Markers of immunogenicity (calreticulin, HMGB1 and MIC-A/B) were also assessed. Results The frequency of circulating CD27 + T cells increases sequentially in the immediate post-operative period peaking on day 7 in OAC patients. (p &lt; 0.01) There is a sequential decrease in the percentage of effector memory and central memory T cells in circulation and an increase in the percentage of naïve T cells in peripheral circulation of OAC patients in the immediate post-operative period. The expression of CTLA-4 on the surface of circulating CD4 + T cells decreases 6 weeks post-operatively in OAC patients. Conclusions We observed increased T cell activation and immune checkpoints immediately post-surgery with returns to baseline by week 6. These results suggest that immune checkpoint inhibitors such as anti-PD-1 may be beneficial immediately post-surgery to maintain T cell activation and prevent exhaustion of this increased population of activated T cells observed immediately post-surgery.


2020 ◽  
Vol 5 (43) ◽  
pp. eaay1863 ◽  
Author(s):  
Laura Strauss ◽  
Mohamed A. A. Mahmoud ◽  
Jessica D. Weaver ◽  
Natalia M. Tijaro-Ovalle ◽  
Anthos Christofides ◽  
...  

PD-1, a T cell checkpoint receptor and target of cancer immunotherapy, is also expressed on myeloid cells. The role of myeloid-specific versus T cell–specific PD-1 ablation on antitumor immunity has remained unclear because most studies have used either PD-1–blocking antibodies or complete PD-1 KO mice. We generated a conditional allele, which allowed myeloid-specific (PD-1f/fLysMcre) or T cell–specific (PD-1f/fCD4cre) targeting of Pdcd1 gene. Compared with T cell–specific PD-1 ablation, myeloid cell–specific PD-1 ablation more effectively decreased tumor growth. We found that granulocyte/macrophage progenitors (GMPs), which accumulate during cancer-driven emergency myelopoiesis and give rise to myeloid-derived suppressor cells (MDSCs), express PD-1. In tumor-bearing PD-1f/fLysMcre but not PD-1f/fCD4cre mice, accumulation of GMP and MDSC was prevented, whereas systemic output of effector myeloid cells was increased. Myeloid cell–specific PD-1 ablation induced an increase of T effector memory cells with improved functionality and mediated antitumor protection despite preserved PD-1 expression in T cells. In PD-1–deficient myeloid progenitors, growth factors driving emergency myelopoiesis induced increased metabolic intermediates of glycolysis, pentose phosphate pathway, and TCA cycle but, most prominently, elevated cholesterol. Because cholesterol is required for differentiation of inflammatory macrophages and DC and promotes antigen-presenting function, our findings indicate that metabolic reprogramming of emergency myelopoiesis and differentiation of effector myeloid cells might be a key mechanism of antitumor immunity mediated by PD-1 blockade.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2779-2779
Author(s):  
Cesarina Giallongo ◽  
Nunziatina Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Cupri ◽  
...  

Abstract Abstract 2779 Background: Tumor cells are able to develop immune evasion mechanisms which induce a state of immune tolerance and inactivate tumor-specific T cells. In this context, in some solid tumors it has been demonstrated that a subpopulation of myeloid cells, defined as “myeloid-derived suppressor cells” (MDSCs), plays an important role in inducing T cell tolerance by production of arginase that depletes microenvironment of arginine, an essential aminoacid for T cell function. Since chronic myeloid leukemia (CML) patients have high levels of immature myeloid cells it is of interest to investigate if these cells have MDSCs phenotype and activity. Aim: The aim of this study was to analyze MDSCs and investigate their involvement in T-cell anergy of CML patients. Methods: MDSCs were analyzed in peripheral blood (PB) of 13 CML patients (at diagnosis and during therapy) and healthy donors (HD; n=20) by cytofluorimetric analysis (CD14+DR- for monocytic MDSCs and CD11b+CD33+CD14-DR- for granulocytic MDSCs). Arginase 1 expression was assessed in PB of HD and CML patient using real time PCR. Purification of granulocytes, monocytes and lymphocytes from PB was performed by a positive magnetic separation kit (EasySep, STEMCELL Technologies). Arginase activity was measured in granulocyte lysates using a colorimetric test after enzymatic activation and arginine hydrolysis. To evaluate the activation of CD3+ T lymphocytes after incubation with phytoemagglutinin, we analyzed at 24, 48, 72 h the following markers: CD69+, CD71+, DR+. Microvesicles were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. Results: CML patients showed high levels of monocytic and granulocytic MDSCs at diagnosis in comparison to HD (63±8 and 83±12,2% respectively in CML vs 4,9±2,1 and 55,8±5,3% respectively in HD; p<0.001) while after 3–6 months of tyrosine kinase inhibitors (TKIs) therapy MDSC levels returned to normal values. Either in PB and in the purified granulocytes subpopulation, arginase1 expression showed a 30 fold increase in CML at diagnosis (CML vs HD: p<0.01) and decreased after therapy. We also evaluated arginase enzymatic activity in granulocytes and we found it increased in CML patients (n=4) compared to HD (n=5) (p<0.05). CML as well as HD T lymphocytes showed a normal activation in vitro which was significantly lost when they was incubated with CML serum (n=4). In addition, an increase of monocytic MDSCs in vitro was observed after incubation of HD monocytes with CML serum (39±6%; p<0.01) or microvescicles (9,2±1,2%; p<0.05) compared to control serum. Conclusions: Granulocytic and monocytic MDSCs are increased in CML patients at diagnosis and decrease during TKIs treatment. Their levels also correlates with Arginase 1 expression and enzymatic activity in granulocytes. CML serum as well as CML microvesicles increase the percentage of HD monocytic MDSCs. Moreover, CML serum leads to anergy of T lymphocytes, probably by Arginase 1 secretion. Disclosures: Off Label Use: Eltrombopag is a thrombopoietin receptor agonist indicated for the treatment of thrombocytopenia in patients with chronic immune (idiopathic) thrombocytopenic purpura (ITP).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4164-4164 ◽  
Author(s):  
Maria Winqvist ◽  
Fariba Mozaffari ◽  
Marzia Palma ◽  
Sandra Eketorp Sylvan ◽  
Hakan Mellstedt ◽  
...  

Abstract Background and Methods: Lenalidomide is an immunomodulatory agent with promising activity in CLL, including various stimulatory effects on T cells (Riches & Gribben, Semin Hematol 2014). This phase II study was conducted in advanced-phase CLL patients and explored the in vivo effects of low-dose lenalidomide on T cell proliferation and immune checkpoint molecule expression. Lenalidomide was used as a single agent week 1-4, after which alemtuzumab was added week 5-16 (as a strong T-cell depleting agent). The safety and clinical efficacy of the combination was also analyzed. Immune monitoring was performed at baseline, after 4 and 16 weeks (end of treatment, EoT) as well as during long-term follow-up. T cells were analyzed by flow cytometry for the cell proliferation marker Ki67, the activation marker HLA-DR and the immune checkpoint markers PD-1 and CTLA-4. CLL cells were analyzed for PD-1 ligand (PD-L1) expression. Results: Totally 23 patients were included. The median age was 69 years (range 61-85), 70% (16/23) had Rai stage III/IV, the median number of prior regimens was 4 (range 1-7) and 61% (14/23) had 17p and/or 11q deletion. The overall response rate (IWCLL criteria) was 58% (11 of 19 evaluable patients), including two CR and nine PR. Median progression-free survival was 5 months (range 0-37+). Median response duration was 11 months (range 1-29+ months). Grade III-IV neutropenia or thrombocytopenia occurred in 84% and 55% of patients, respectively. The most common non-hematological grade III-IV adverse event was febrile neutropenia (7/23 patients, 30%). CMV reactivation requiring valganciclovir therapy occurred in seven patients (30%). The maximum tolerated dose of lenalidomide was 5 mg/day. A significant increase in the proportion of proliferating T cells (CD3+/Ki67+) was observed after single agent lenalidomide treatment, from a median of 3.6 % (range 0.8-15) at baseline to 6.2 % (range 1.9-19) at week 4 (p=0.003). The proportion of Ki67+ T cells increased further after adding alemtuzumab with the peak value observed at EoT, after which normalization occurred gradually during follow-up (Figure 1). Even though the total number of T cells was low at EoT due to alemtuzumab, the percentage of Ki67+ T cells in both CD4+ and CD8+ cell subsets had increased significantly (median 6.2% and 9.5 % respectively at week 16, p=0.01 and p=0.02). Furthermore we observed a significant increase in the proportion of HLA-DR positive T cells during therapy (p=0.001 in the CD4+ subset and p=0.02 in the CD8+ subset). The Th1/Th2 balance did not change after four weeks of lenalidomide treatment but a significant increase in Th2 cells was observed after combination treatment (p=0.02). The median baseline PD-L1-expression on CLL cells was 0.3% (range 0.0-0.7). A median of 25.2 % (range 9.3-42.4) of CD4+ T cells and 6.2 % (range 2.6-21.7) of CD8+ T cells were PD-1 positive. The median baseline expression of CTLA-4 was 0.01% (range 0.0-0.5) in CD8+ T cells and 0.1 % (range 0.01-1.13) in CD4+ T cells respectively. However, no significant changes in PD-1, PD-L1 or CTLA-4 expression were observed, neither after 4 weeks of lenalidomide single agent therapy nor during combination treatment with alemtuzumab. Conclusions: A significant increase in the proportion of Ki67-positive T cells was observed during low-dose lenalidomide treatment that was not eliminated by depleting overall T cell numbers in vivo by alemtuzumab. Immune checkpoint molecule expression remained largely unaffected. Lenalidomide and alemtuzumab in combination showed clinical activity and an acceptable safety profile in patients with advanced, heavily pretreated CLL. Further studies are warranted on the complex role of T cells in CLL, their responsiveness to lenalidomide as well as drug induced immune-enhancing effects in other clinical situations. Figure 1. Figure 1. Disclosures Winqvist: Janssen Cilag: Research Funding. Off Label Use: Lenalidomide is not approved for CLL.. Mellstedt:Celgene: Research Funding. Osterborg:Gilead: Honoraria; Janssen: Honoraria, Research Funding; GSK: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Amgen: Research Funding. Lundin:Janssen: Research Funding; Novartis: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document