EP.WE.805From bench to bedside; A rationale for Immunotherapy in the adjuvant setting for Oesophageal cancer

2021 ◽  
Vol 108 (Supplement_7) ◽  
Author(s):  
Noel Donlon ◽  
Maria Davern ◽  
Andrew Sheppard ◽  
John Reynolds ◽  
Joanne Lysaght

Abstract Background Immunotherapy is being intensively investigated for its utilisation in the curative setting as a single agent and in the multimodal setting, however, the most appropriate time to incorporate ICIs remains unknown. Our study profiles systemic anti-tumour immunity perioperatively to provide a rationale for adjuvant immunotherapy. Methods Systemic immunity was immunophenotyped pre and post-oesophagectomy on days 0, 1, 3, 7 and week 6 by flow cytometry (n = 14). The frequency of circulating lymphocytes, T cells, cytotoxic and helper T lymphocytes was profiled longitudinally including the proportion of T cell subsets in circulation. This study also profiled immune checkpoint expression on circulating T cells including: PD-1, CTLA-4, TIGIT, TIM-3, LAG-3, PD-L1 and PD-L2. Markers of immunogenicity (calreticulin, HMGB1 and MIC-A/B) were also assessed. Results The frequency of circulating CD27 + T cells increases sequentially in the immediate post-operative period peaking on day 7 in OAC patients. (p < 0.01) There is a sequential decrease in the percentage of effector memory and central memory T cells in circulation and an increase in the percentage of naïve T cells in peripheral circulation of OAC patients in the immediate post-operative period. The expression of CTLA-4 on the surface of circulating CD4 + T cells decreases 6 weeks post-operatively in OAC patients. Conclusions We observed increased T cell activation and immune checkpoints immediately post-surgery with returns to baseline by week 6. These results suggest that immune checkpoint inhibitors such as anti-PD-1 may be beneficial immediately post-surgery to maintain T cell activation and prevent exhaustion of this increased population of activated T cells observed immediately post-surgery.

2021 ◽  
Author(s):  
Florian Bach ◽  
Diana Munoz Sandoval ◽  
Michalina Mazurczyk ◽  
Yrene Themistocleous ◽  
Thomas A Rawlinson ◽  
...  

Plasmodium vivax offers unique challenges for malaria control and may prove a more difficult species to eradicate than Plasmodium falciparum. Yet compared to P. falciparum we know very little about the innate and adaptive immune responses that need to be harnessed to reduce disease and transmission. In this study, we inoculated human volunteers with a clonal field isolate of P. vivax and used systems immunology tools to track their response through infection and convalescence. Our data reveal Plasmodium vivax triggers an acute phase response that shares remarkable overlap with that of P. falciparum, suggesting a hardwired innate response that does not differentiate between parasite species. This leads to the global recruitment of innate-like and adaptive T cells into lymphoid tissues where up to one quarter of the T cell compartment is activated. Heterogeneous effector memory-like CD4+ T cells dominate this response and their activation coincides with collateral tissue damage. Remarkably, comparative transcriptional analyses show that P. falciparum drives even higher levels of T cell activation; diverging T cell responses may therefore explain why falciparum malaria more frequently causes severe disease.


2020 ◽  
Author(s):  
Anno Saris ◽  
Tom D.Y. Reijnders ◽  
Esther J. Nossent ◽  
Alex R. Schuurman ◽  
Jan Verhoeff ◽  
...  

AbstractOur understanding of the coronavirus disease-19 (COVID-19) immune response is almost exclusively derived from studies that examined blood. To gain insight in the pulmonary immune response we analysed BALF samples and paired blood samples from 17 severe COVID-19 patients. Macrophages and T cells were the most abundant cells in BALF. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells and expressed higher levels of the exhaustion marker PD-1 than in peripheral blood. Prolonged ICU stay associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. In conclusion, the bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood.SummaryThe bronchoalveolar immune response in severe COVID-19 strongly differs from the peripheral blood immune profile. Fatal COVID-19 associated with T cell activation blood, but not in BALF.


2006 ◽  
Vol 13 (3) ◽  
pp. 403-408 ◽  
Author(s):  
Brian Crucian ◽  
Mayra Nelman-Gonzalez ◽  
Clarence Sams

ABSTRACT Adhesion molecules are important for leukocyte endothelial attachment and migration to sites of inflammation. The LFA-1 (CD11a and CD18) integrin molecule is constitutively expressed on the T-cell surface. Following T-cell activation, a rapid conformational change of LFA-1 to an “adhesive” state occurs, allowing LFA-1 binding to intracellular cell adhesion molecule type 1 (ICAM-1)-expressing targets, such as antigen-presenting cells. For this study, a rapid flow cytometry method for the quantitation of LFA-1-adhesive T cells following activation was developed. Purified ICAM-1 was bound to 4.5-μm-diameter beads. Following peripheral blood mononuclear cell activation culture (phorbol myristate acetate and ionomycin), the cells were incubated with the ICAM-1 beads, which allowed attachment to occur. The T cell-bead complexes were then resolved from unbound T cells by flow cytometry. Multicolor analysis allowed a complete phenotypic analysis of the adhesive T-cell subsets. Experimental controls indicated that the T cell-bead attachment was LFA-1 and ICAM-1 specific. Very little binding between unactivated T cells and ICAM beads or between activated T cells and plain beads was observed. The kinetics of the response was extremely rapid, with nearly maximal numbers of adhesive T cells observed following 5 min of activation. Scanning electron microscopy analysis was used to characterize legitimate bead-cell binding. By using multicolor cytometry, the responding adhesive T-cell population was usually identified as a distinct subset of T cells with the following phenotype: CD3+ CD4+ or CD8+ CD19− CD16− CD45RO+ CD62L+ CD27+ CD57−. A rapid and simple method for the scoring of LFA-1-adhesive T cells was developed and may have significant utility for immune function studies.


Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3101-3101
Author(s):  
Alexander Starodub ◽  
Sarina Anne Piha-Paul ◽  
Raghad Karim ◽  
Curtis Ruegg ◽  
Victoria Smith ◽  
...  

3101 Background: Overcoming the immune-suppressive tumor environment induced by myeloid-derived suppressor cells (MDSC) is a major challenge in immune therapy. CD33 signaling in immature myeloid cells promotes expansion of MDSC and production of immune-suppressive factors. AMV564 is a bivalent, bispecific T-cell engager that binds CD3 and CD33. Preferential binding of AMV564 to areas of high CD33 density enables selective targeting of MDSC. Ex vivo data (Cheng 2017; Blood;130:51) and an ongoing clinical trial in acute myeloid leukemia (NCT03144245) demonstrate the ability of AMV564 to deplete MDSC while sparing monocytes and neutrophils. Methods: In this 3+3 dose escalation study, patients with advanced solid tumors receive AMV564 once daily via subcutaneous (SC) injection for 2 out of 3 wks per cycle, alone or in combination with pembrolizumab (200 mg every 3 wks). Key objectives are to evaluate AMV564 safety, identify a maximum tolerated or recommended phase 2 dose, and evaluate PK, immunophenotype of myeloid and T cell compartments, and preliminary efficacy. Results: Eleven patients have been enrolled: 8 monotherapy (3 at 15 mcg/d, 5 at 50 mcg/d) and 3 combination (5 mcg/d). Tumor types include ovarian (n = 2), small bowel, gastroesophageal junction, endometrial, rectal, penile, urothelial, squamous cell carcinoma (skin), appendiceal, and non-small cell lung. AMV564 was associated with grade (G) 1-2 injection site reactions and G1-2 fevers, which were manageable with acetaminophen and diphenhydramine, as well as G2 weight gain and G3 anemia. No dose-liming toxicity has been observed in any cohort. Three monotherapy patients (15 mcg/d) were evaluable for efficacy with ≥1 on-treatment scan; 2 had SD and 1 PD per RECIST 1.1 criteria. T cell activation, as shown by redistribution from the periphery (margination), was apparent in the first week of dosing for most patients. Compensatory myelopoiesis led to initial expansion of MDSC which were then depleted by AMV564. Increased cytotoxic T cell activation and T-helper (Th) 1 response was evidenced by increased T-bet positive CD4 and CD8 cells and controlled or decreased regulatory T cells. In some patients, effector memory CD8 cell populations (Tem and Temra) were expanded. Conclusions: AMV564 is safe and tolerable when administered SC at doses of 15 mcg/d alone and 5 mcg/d in combination with pembrolizumab. AMV564 depleted MDSC populations and altered T cell profiles consistent with activation of cytotoxic T cells and a Th1 response. Clinical trial information: NCT04128423 .


Gut ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 499-505 ◽  
Author(s):  
A Stallmach ◽  
F Schäfer ◽  
S Hoffmann ◽  
S Weber ◽  
I Müller-Molaian ◽  
...  

Background—Immunoregulatory abnormalities of T cells might be of importance in the pathogenesis of pouchitis after ileoanal pouch anastomosis (IAP).Aims—To characterise T cell subsets, their state of activation, and production of cytokines in inflamed and non-inflamed pouches in patients with ulcerative colitis (UC) and familial adenomatous polyposis (FAP). The influence of T cell activation on mucosal transformation was also studied.Patients—Mucosal biopsy specimens were taken from 42 patients with IAP (33 with UC and nine with FAP).Methods—Mononuclear cells were isolated by standard techniques and characterised by three colour flow cytometry. Interferon γ (IFN-γ) production was studied using the ELISPOT technique.Results—In patients with UC with pouchitis there was a significant increase in the CD4:CD8 ratio, expression of activation markers on CD3+ cells, and number of IFNγ producing mononuclear cells compared with patients with UC without pouchitis (CD4:CD8 ratio 1.3 (range 0.7–2.7) versus 0.6 (0.1–1.0), p=0.012). In addition, a positive correlation between increased crypt depth and the number of CD4+ cells (r=0.57) was shown.Conclusion—The observed increase in activated mucosal CD4+ T cells and IFN-γ production might lead to mucosal destruction and crypt hyperplasia as seen in pouchitis.


Author(s):  
Juan Yang ◽  
Xianzhi Yang ◽  
Wenfeng Pan ◽  
Mingshuo Wang ◽  
Yuxiong Lu ◽  
...  

Immune checkpoint blockade (ICB) therapies such as PD-1 antibodies have produced significant clinical responses in treating a variety of human malignancies, yet only a subset of cancer patients benefit from such therapy. To improve the ICB efficacy, combinations with additional therapeutics were under intensive investigation. Recently, special dietary compositions that can lower the cancer risk or inhibit cancer progression have drawn significant attention, although few were reported to show synergistic effects with ICB therapies. Interestingly, Fucoidan is naturally derived from edible brown algae and exhibits antitumor and immunomodulatory activities. Here we discover that fucoidan-supplemented diet significantly improves the antitumor activities of PD-1 antibodies in vivo. Specifically, fucoidan as a dietary ingredient strongly inhibits tumor growth when co-administrated with PD-1 antibodies, which effects can be further strengthened when fucoidan is applied before PD-1 treatments. Immune analysis revealed that fucoidan consistently promotes the activation of tumor-infiltrating CD8+ T cells, which support the evident synergies with ICB therapies. RNAseq analysis suggested that the JAK-STAT pathway is critical for fucoidan to enhance the effector function of CD8+ T cells, which could be otherwise attenuated by disruption of the T-cell receptor (TCR)/CD3 complex on the cell surface. Mechanistically, fucoidan interacts with this complex and augments TCR-mediated signaling that cooperate with the JAK-STAT pathway to stimulate T cell activation. Taken together, we demonstrated that fucoidan is a promising dietary supplement combined with ICB therapies to treat malignancies, and dissected an underappreciated mechanism for fucoidan-elicited immunomodulatory effects in cancer.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2210
Author(s):  
Kyoung-Woo Kim ◽  
Hyun-Ju Lee ◽  
Hyeon-Ji Kim ◽  
Mee-Kum Kim

The kinetics of antigen-presenting cells (APCs) vary depending on their resident tissues and the manner of immunization. We investigated the long-term changes in mature APC and T-cell subsets over 4 weeks in the ocular surface in murine models of corneal quiescent or potent sterile inflammation, and allosensitization using partial (PT), syngeneic (Syn), and allogeneic (Allo) corneal transplantation. In PT, CD11bintCD11chiMHCIIhiCD86hi cells increased until 4 weeks with an increase in IFNγhi T cells. In Syn, both CD11bintCD11chiMHCIIhiCD86hi and CD11bhiCD11chiMHCIIhiCD86hi APC subsets increased until 4 weeks with a brief increase in CD69hi T cells at 2 weeks. In Allo, CD11bintCD11chiMHCIIhiCD86hi and CD11bhiCD11chiMHCIIhiCD86hi APC subsets increased until 4 weeks, and an early increase in CD69hi T cells was observed at 2 weeks followed by a late increase in IFNγhi T cells at 4 weeks. The frequency of the IFNγhi T cell subset was positively correlated with the frequency of the CD11bintCD11chiMHCIIhiCD86hi subset, indicating the existence of APC–T cell interaction in the ocular surface. Together, the results indicate that allosensitization in mature APCs leads to T-cell activation in the ocular surface, whereas sterile inflammation merely induces a brief and non-specific T-cell activation in the ocular surface.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1521-1526 ◽  
Author(s):  
TJ Smith ◽  
N Terada ◽  
CC Robinson ◽  
EW Gelfand

Acute infectious mononucleosis (AIM) is caused by the Epstein-Barr virus (EBV) and is characterized by a proliferation of atypical lymphocytes, predominantly CD8+ T cells. Various diseases associated with T-cell activation have been shown to stimulate the selective expansion of certain V beta (variable region of the T-cell receptor beta chain) expressing T-cell populations. The purpose of this investigation was to determine if the proliferation of T cells accompanying AIM is associated with selective expression/expansion of distinct populations of V beta T cells. We determined V beta expression in eight patients with clinical and laboratory evidence of AIM, including an atypical lymphocytosis. Gel electrophoresis and quantitative analysis were performed on cDNA amplified by the polymerase chain reaction (PCR) using different V beta region primers. Gel electrophoresis analysis showed prominent V beta 6.1–3 and V beta 7 bands in all eight patients with AIM but not in the controls. Quantitative PCR analysis showed that the V beta 6.1–3 and V beta 7 mean PCR ratios increased, respectively, from 163.0 +/- 22.5 and 142.3 +/- 5.5 in controls to 339.9 +/- 38.8 (P < .03) and 396.1 +/- 45.6 (P < .01) in the eight patients with AIM. Two of the eight patients who had increased V beta 6.1–3 and V beta 7 expression were retested after clinical resolution of AIM and no longer had evidence of increased V beta 6.1–3 and V beta 7 T-cell expression. AIM is associated with a selective increased expression of V beta 6.1–3 and V beta 7 T cells present at the time of initial clinical symptoms and atypical lymphocytosis. This increased expression resolves following recovery from AIM. This V beta-specific selective expression resembles the super- antigen response seen after staphylococcal toxin stimulation and may be caused by EBV triggering of selective expansion of V beta 6.1–3 and V beta 7 T-cell subsets.


2021 ◽  
Vol 9 (8) ◽  
pp. e002279
Author(s):  
Sho Isoyama ◽  
Shigeyuki Mori ◽  
Daisuke Sugiyama ◽  
Yasuhiro Kojima ◽  
Yasuko Tada ◽  
...  

BackgroundImmune checkpoint blockade (ICB) induces durable clinical responses in patients with various types of cancer. However, its limited clinical efficacy requires the development of better approaches. In addition to immune checkpoint molecules, tumor-infiltrating immunosuppressive cells including regulatory T cells (Tregs) play crucial roles in the immune suppressive tumor microenvironment. While phosphatidylinositol 3-kinase (PI3K) inhibition as a Treg-targeted treatment has been implicated in animal models, its effects on human Tregs and on the potential impairment of effector T cells are required to be clarified for successful cancer immunotherapy.MethodsThe impact of a selective-PI3K inhibitor ZSTK474 with or without anti-programmed cell death 1 (PD-1) monoclonal antibody on Tregs and CD8+ T cells were examined with in vivo animal models and in vitro experiments with antigen specific and non-specific fashions using peripheral blood from healthy individuals and cancer patients. Phenotypes and functions of Tregs and effector T cells were examined with comprehensive gene and protein expression assays.ResultsImproved antitumor effects by the PI3K inhibitor in combination with ICB, particularly PD-1 blockade, were observed in mice and humans. Although administration of the PI3K inhibitor at higher doses impaired activation of CD8+ T cells as well as Tregs, the optimization (doses and timing) of this combination treatment selectively decreased intratumoral Tregs, resulting in increased tumor antigen-specific CD8+ T cells in the treated mice. Moreover, on the administration of the PI3K inhibitor with the optimal dose for selectively deleting Tregs, PI3K signaling was inhibited not only in Tregs but also in activated CD8+ T cells, leading to the enhanced generation of tumor antigen-specific memory CD8+ T cells which contributed to durable antitumor immunity. These opposing outcomes between Tregs and CD8+ T cells were attributed to the high degree of dependence on T cell signaling in the former but not in the latter.ConclusionsPI3K inhibitor in the combination with ICB with the optimized protocol fine-tuned T cell activation signaling for antitumor immunity via decreasing Tregs and optimizing memory CD8+ T cell responses, illustrating a promising combination therapy.


Sign in / Sign up

Export Citation Format

Share Document