scholarly journals Ligilactobacillus salivarius Strains Isolated From the Porcine Gut Modulate Innate Immune Responses in Epithelial Cells and Improve Protection Against Intestinal Viral-Bacterial Superinfection

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhki Indo ◽  
Shugo Kitahara ◽  
Mikado Tomokiyo ◽  
Shota Araki ◽  
Md. Aminul Islam ◽  
...  

Previously, we constructed a library of Ligilactobacillus salivarius strains from the intestine of wakame-fed pigs and reported a strain-dependent capacity to modulate IFN-β expression in porcine intestinal epithelial (PIE) cells. In this work, we further characterized the immunomodulatory activities of L. salivarius strains from wakame-fed pigs by evaluating their ability to modulate TLR3- and TLR4-mediated innate immune responses in PIE cells. Two strains with a remarkable immunomodulatory potential were selected: L. salivarius FFIG35 and FFIG58. Both strains improved IFN-β, IFN-λ and antiviral factors expression in PIE cells after TLR3 activation, which correlated with an enhanced resistance to rotavirus infection. Moreover, a model of enterotoxigenic E. coli (ETEC)/rotavirus superinfection in PIE cells was developed. Cells were more susceptible to rotavirus infection when the challenge occurred in conjunction with ETEC compared to the virus alone. However, L. salivarius FFIG35 and FFIG58 maintained their ability to enhance IFN-β, IFN-λ and antiviral factors expression in PIE cells, and to reduce rotavirus replication in the context of superinfection. We also demonstrated that FFIG35 and FFIG58 strains regulated the immune response of PIE cells to rotavirus challenge or ETEC/rotavirus superinfection through the modulation of negative regulators of the TLR signaling pathway. In vivo studies performed in mice models confirmed the ability of L. salivarius FFIG58 to beneficially modulate the innate immune response and protect against ETEC infection. The results of this work contribute to the understanding of beneficial lactobacilli interactions with epithelial cells and allow us to hypothesize that the FFIG35 or FFIG58 strains could be used for the development of highly efficient functional feed to improve immune health status and reduce the severity of intestinal infections and superinfections in weaned piglets.

2007 ◽  
Vol 75 (6) ◽  
pp. 2717-2728 ◽  
Author(s):  
Torsten Sterzenbach ◽  
Sae Kyung Lee ◽  
Birgit Brenneke ◽  
Franz von Goetz ◽  
David B. Schauer ◽  
...  

ABSTRACT Enterohepatic Helicobacter species infect the intestinal tracts and biliary trees of various mammals, including mice and humans, and are associated with chronic inflammatory diseases of the intestine, gallstone formation, and malignant transformation. The recent analysis of the whole genome sequence of the mouse enterohepatic species Helicobacter hepaticus allowed us to perform a functional analysis of bacterial factors that may play a role in these diseases. We tested the hypothesis that H. hepaticus suppresses or evades innate immune responses of mouse intestinal epithelial cells, which allows this pathogen to induce or contribute to chronic inflammatory disease. We demonstrated in the present study that the innate immune responses of intestinal epithelial cells to lipopolysaccharide (LPS) via Toll-like receptor 4 (TLR4) and to flagellin-mediated activation via TLR5 are reduced by H. hepaticus infection through soluble bacterial factors. In particular, H. hepaticus lysate and the soluble component LPS antagonized TLR4- and TLR5-mediated immune responses of intestinal epithelial cells. H. hepaticus lysate and LPS inhibited development of endotoxin tolerance to Escherichia coli LPS. Suppression of innate immune responses by H. hepaticus LPS thus may affect intestinal responses to the resident microbial flora, epithelial homeostasis, and intestinal inflammatory conditions.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 2-3
Author(s):  
J M Allaire ◽  
A Poon ◽  
S M Crowley ◽  
X Han ◽  
M Stahl ◽  
...  

Abstract Background Intestinal epithelial cells (IEC) reside in close contact with the gut microbiota. It is thus important that IEC are hypo-responsive to bacterial products to prevent maladaptive inflammatory responses in the gut, such as those seen in Inflammatory bowel diseases (IBD). This suppression of innate immune signaling in IEC is in part due to their strong expression of Single Ig IL1 related receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and toll-like receptor (TLR) signaling. IL37, a newly recognized anti-inflammatory cytokine has been shown to strongly inhibit innate signaling in cells by binding to, and signaling through SIGIRR, leading to suppression of various forms of inflammation in mice. Few studies have looked at the function of IL-37/SIGIRR in IEC and their potential use to balance inflammatory responses. Notably, while many groups have studied IEC immune response in vitro, using transformed IEC lines, our focus is on primary-derived IEC which more accurately reflect in vivo responses. Aims To characterize IEC intrinsic and species-specific immune responses elicited by bacteria and host products as well as the role of IL37/SIGIRR in regulating this innate signaling. Methods We used organoid to study the innate immune responses of primary IEC derived from human or mouse colon (colonoids). After stimulation with inflammatory stimuli (IL1β, FliC and LPS), qPCR, ELISA, Milliplex Multiplex Assay and Western blot were used to determine modification in signalling pathway and cytokine/chemokine secretion. Results Using colonoids derived from healthy donors, we demonstrated that unlike transformed cell lines or mouse IEC, human IEC respond only to the bacterial product FliC, and not to LPS or IL1β. We further characterized human colonoid innate immune responses and despite significant inter-individual variability upon FliC stimulation, all organoids released several chemokines (IL8, CXCL1, CXCL2, CCL2 and CCL20). We showed for the first time that IL37 attenuated these innate immune responses through inhibition of intracellular signaling pathways (p38 and NFkB). Using colonoids derived from wildtype and Sigirr deficient mice, we found that mice IEC were responsive to IL1b and FliC and that the suppressive effects of IL37 were Sigirr dependent. Conclusions Our results show that human IEC show variability among individuals in the magnitude of their innate immune responses, and these responses differ from those obtained from transformed cells and primary mouse IEC. For the first time, we show that IL37 suppresses IEC innate immune responses, through its ability to signal through Sigirr. Further investigations will assess the ability of IL37 to control inflammation of IEC derived from IBD patients, as a potential therapeutic to promote gut health. Funding Agencies CAG, CIHRMSFHR


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Spyridon Stavrou ◽  
Alexya N. Aguilera ◽  
Kristin Blouch ◽  
Susan R. Ross

ABSTRACTHost recognition of viral nucleic acids generated during infection leads to the activation of innate immune responses essential for early control of virus. Retrovirus reverse transcription creates numerous potential ligands for cytosolic host sensors that recognize foreign nucleic acids, including single-stranded RNA (ssRNA), RNA/DNA hybrids, and double-stranded DNA (dsDNA). We and others recently showed that the sensors cyclic GMP-AMP synthase (cGAS), DEAD-box helicase 41 (DDX41), and members of the Aim2-like receptor (ALR) family participate in the recognition of retroviral reverse transcripts. However, why multiple sensors might be required and their relative importance inin vivocontrol of retroviral infection are not known. Here, we show that DDX41 primarily senses the DNA/RNA hybrid generated at the first step of reverse transcription, while cGAS recognizes dsDNA generated at the next step. We also show that both DDX41 and cGAS are needed for the antiretroviral innate immune response to murine leukemia virus (MLV) and HIV in primary mouse macrophages and dendritic cells (DCs). Using mice with cell type-specific knockout of theDdx41gene, we show that DDX41 sensing in DCs but not macrophages was critical for controllingin vivoMLV infection. This suggests that DCs are essentialin vivotargets for infection, as well as for initiating the antiviral response. Our work demonstrates that the innate immune response to retrovirus infection depends on multiple host nucleic acid sensors that recognize different reverse transcription intermediates.IMPORTANCEViruses are detected by many different host sensors of nucleic acid, which in turn trigger innate immune responses, such as type I interferon (IFN) production, required to control infection. We show here that at least two sensors are needed to initiate a highly effective innate immune response to retroviruses—DDX41, which preferentially senses the RNA/DNA hybrid generated at the first step of retrovirus replication, and cGAS, which recognizes double-stranded DNA generated at the second step. Importantly, we demonstrate using mice lacking DDX41 or cGAS that both sensors are needed for the full antiviral response needed to controlin vivoMLV infection. These findings underscore the need for multiple host factors to counteract retroviral infection.


2020 ◽  
Vol 8 (11) ◽  
pp. 1659
Author(s):  
Binghui Zhou ◽  
Leonardo Albarracin ◽  
Yuhki Indo ◽  
Lorena Arce ◽  
Yuki Masumizu ◽  
...  

In this article, Ligilactobacillus salivarius FFIG strains, isolated from the intestinal tract of wakame-fed pigs, are characterized according to their potential probiotic properties. Strains were evaluated by studying their interaction with porcine intestinal epithelial (PIE) cells in terms of their ability to regulate toll-like receptor (TLR)-3- or TLR4-mediated innate immune responses, as well as by assessing their adhesion capabilities to porcine epithelial cells and mucins. These functional studies were complemented with comparative genomic evaluations using the complete genome sequences of porcine L. salivarius strains selected from subgroups that demonstrated different “immune” and “adhesion” phenotypes. We found that their immunomodulatory and adhesion capabilities are a strain-dependent characteristic. Our analysis indicated that the differential immunomodulatory and adhesive activities of FFIG strains would be dependent on the combination of several surface structures acting simultaneously, which include peptidoglycan, exopolysaccharides, lipoteichoic acid, and adhesins. Of note, our results indicate that there is no correlation between the immunomodulatory capacity of the strains with their adhesion ability to mucins and epithelial cells. Therefore, in the selection of strains destined to colonize the intestinal mucosa and modulate the immunity of the host, both properties must be adequately evaluated. Interestingly, we showed that L. salivarius FFIG58 functionally modulated the innate immune responses triggered by TLR3 and TLR4 activation in PIE cells and efficiently adhered to these cells. Moreover, the FFIG58 strain was capable of reducing rotavirus replication in PIE cells. Therefore, L. salivarius FFIG58 is a good candidate for further in vivo studying the protective effect of lactobacilli against intestinal infections in the porcine host. We also reported and analyzed, for the first time, the complete genome of several L. salivarius strains that were isolated from the intestine of pigs after the selective pressure of feeding the animals with wakame. Further genomic analysis could be of value to reveal the metabolic characteristics and potential of the FFIG strains in general and of the FFIG58 strain, in particular, relating to wakame by-products assimilation.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Hyun-Cheol Lee ◽  
Eun-Seo Lee ◽  
Md Bashir Uddin ◽  
Tae-Hwan Kim ◽  
Jae-Hoon Kim ◽  
...  

ABSTRACT Tryptophanyl-tRNA synthetase (WRS) is one of the aminoacyl-tRNA synthetases (ARSs) that possesses noncanonical functions. Full-length WRS is released during bacterial infection and primes the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to elicit innate immune responses. However, the role of WRS in viral infection remains unknown. Here, we show that full-length WRS is secreted by immune cells in the early phase of viral infection and functions as an antiviral cytokine. Treatment of cells with recombinant WRS protein promotes the production of inflammatory cytokines and type I interferons (IFNs) and curtails virus replication in THP-1 and Raw264.7 cells but not in TLR4−/− or MD2−/− bone marrow-derived macrophages (BMDMs). Intravenous and intranasal administration of recombinant WRS protein induces an innate immune response and blocks viral replication in vivo. These findings suggest that secreted full-length WRS has a noncanonical role in inducing innate immune responses to viral infection as well as to bacterial infection. IMPORTANCE ARSs are essential enzymes in translation that link specific amino acids to their cognate tRNAs. In higher eukaryotes, some ARSs possess additional, noncanonical functions in the regulation of cell metabolism. Here, we report a novel noncanonical function of WRS in antiviral defense. WRS is rapidly secreted in response to viral infection and primes the innate immune response by inducing the secretion of proinflammatory cytokines and type I IFNs, resulting in the inhibition of virus replication both in vitro and in vivo. Thus, we consider WRS to be a member of the antiviral innate immune response. The results of this study enhance our understanding of host defense systems and provide additional information on the noncanonical functions of ARSs.


2018 ◽  
Author(s):  
Spyridon Stavrou ◽  
Alexya Aguilera ◽  
Kristin Blouch ◽  
Susan R. Ross

AbstractHost recognition of viral nucleic acids generated during infection leads to the activation of innate immune responses essential for early control of virus. Retrovirus reverse transcription creates numerous potential ligands for cytosolic host sensors that recognize foreign nucleic acids, including single-stranded RNA (ssRNA), RNA/DNA hybrids and double stranded DNA (dsDNA). We and others recently showed that the sensors cyclic GMP-AMP synthase (cGAS), dead-box helicase 41 (DDX41) and members of the Aim2-like receptor (ALR) family participate in the recognition of retroviral reverse transcripts. However, why multiple sensors might be required and their relative importance inin vivocontrol of retroviral infection is not known. Here we show that DDX41 primarily senses the DNA/RNA hybrid generated at the first step of reverse transcription, while cGAS recognizes dsDNA generated at the next step. We also show that both DDX41 and cGAS are needed for the anti-retroviral innate immune response to MLV and HIV in primary mouse macrophages and dendritic cells (DC). Using mice with macrophage- or -specific knockout of the DDX41 gene, we show that DDX41 sensing in DCs but not macrophages was critical for controllingin vivoMLV infection. This suggests that DCs are essentialin vivotargets for infection, as well as for initiating the antiviral response. Our work demonstrates that the innate immune response to retrovirus infection depends on multiple host nucleic acid sensors that recognize different reverse transcription intermediates.ImportanceViruses are detected by many different host sensors of nucleic acid, which in turn trigger innate immune responses, such as type I IFN production, required to control infection. We show here that at least two sensors are needed to initiate a highly effective innate immune response to retroviruses – DDX41, which preferentially senses the RNA/DNA hybrid generated at the first step of retrovirus replication and cGAS, which recognizes double-stranded DNA generated at the 2ndstep. Importantly, we demonstrate using mice lacking DDX41 or cGAS, that both sensors are needed for the full antiviral response needed to controlin vivoMLV infection. These findings underscore the need for multiple host factors to counteract retroviral infection.


Sign in / Sign up

Export Citation Format

Share Document