scholarly journals The Early Postnatal Life: A Dynamic Period in Thymic Epithelial Cell Differentiation

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruben G. R. Pinheiro ◽  
Nuno L. Alves

The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells (TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant T cells. The role of TECs during the first weeks of the murine postnatal life is particularly challenging due to the significant augment in T cell production. Here, we critically review recent studies centered on the timely coordination between the expansion and maturation of TECs during this period and their specialized role in T cell development and selection. We further discuss how aging impacts on the pool of TEC progenitors and maintenance of functionally thymic epithelial microenvironments, and the implications of these chances in the capacity of the thymus to sustain regular thymopoiesis throughout life.

2021 ◽  
Vol 12 ◽  
Author(s):  
Huishan Tao ◽  
Lei Li ◽  
Nan-Shih Liao ◽  
Kimberly S. Schluns ◽  
Shirley Luckhart ◽  
...  

Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.


2021 ◽  
Author(s):  
Sayumi Fujimori ◽  
Izumi Ohigashi ◽  
Hayato Abe ◽  
M Mark Taketo ◽  
Yousuke Takahama ◽  
...  

In the thymus, the thymic epithelium provides a microenvironment essential for the development of functionally competent and self-tolerant T cells. Previous findings showed that modulation of Wnt/β-catenin signaling in thymic epithelial cells (TECs) disrupts embryonic thymus organogenesis. However, the role of β-catenin in TECs for postnatal T cell development remains to be elucidated. Here, we analyzed gain-of function (GOF) and loss-of-function (LOF) of β-catenin highly specific in TECs. We found that GOF of β-catenin in TECs results in severe thymic dysplasia and T cell deficiency beginning from the embryonic period. By contrast, LOF of β-catenin in TECs reduces the number of cortical TECs and thymocytes modestly and only postnatally. These results indicate that fine-tuning of β-catenin expression within a permissive range is required for TECs to generate an optimal microenvironment to support postnatal T cell development.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Engel ◽  
Tom Sidwell ◽  
Ajithkumar Vasanthakumar ◽  
George Grigoriadis ◽  
Ashish Banerjee

Regulatory T cells (Tregs) are a subset of CD4 T cells that are key mediators of immune tolerance. Most Tregs develop in the thymus. In this review we summarise recent findings on the role of diverse signalling pathways and downstream transcription factors in thymic Treg development.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 124-124
Author(s):  
Ivan Maillard ◽  
Laleh Talebian ◽  
Zhe Li ◽  
Yalin Guo ◽  
Daisuke Sugiyama ◽  
...  

Abstract The family of core binding factors includes the DNA-binding subunits Runx1-3 and the common non-DNA binding partner CBFβ. Runx1 and CBFβ are essential for the emergence of hematopoietic stem cells during fetal development, but not for stem cell maintenance during later ontogeny. Runx1 is also required for megakaryocyte differentiation, B cell development, and for the DN2 to DN3 transition in thymocyte development. Runx2/CBFβ are critical for normal osteogenesis, and Runx3 for CD4 silencing in CD8+ T cells, but their contribution to other steps of hematopoietic development is unknown. To examine the collective role of core binding factors in hematopoiesis, we generated a hypomorphic Cbfb allele (Cbfbrss). CBFβ protein levels were reduced by approximately 2–3 fold in fetuses homozygous for the Cbfbrss allele (Cbfbrss/rss), and 3–4 fold in fetuses carrying one hypomorphic and one knockout allele (Cbfbrss/−). Cbfbrss/rss and Cbfbrss/− fetuses had normal erythroid and B cell development, and relatively mild abnormalities in megakaryocyte and granulocyte differentiation. In contrast, T cell development was very sensitive to an incremental reduction of CBFβ levels: mature thymocytes were decreased in Cbfbrss/rss fetuses, and virtually absent in Cbfbrss/−fetuses. We next assessed the development of Cbfbrss/rss and Cbfbrss/− fetal liver progenitors after transplantation to irradiated adult recipients, in competition with wild-type (wt) bone marrow cells. Wt, Cbfbrss/rss and Cbfbrss/− fetal progenitors replenished the erythroid, myeloid and B cell compartments equally well. The overall development of Cbfbrss/rss T cells was preserved, although CD4 expression was derepressed in double negative thymocytes. In Cbfbrss/− chimeras, mature thymocytes were entirely derived from competitor cells. Furthermore, the developmental block in Cbfbrss/− progenitors was present at the earliest stages of T cell development within the DN1 (ETP) and DN2 subsets. Our data define a critical CBFβ threshold for normal T cell development, and they situate an essential role of core binding factors during the earliest stages of T cell development. In addition, early thymopoiesis appeared more severely affected by reduced CBFβ dosage than by the lack of Runx1 (Ichikawa et al., Nat Med 2004; Growney et al., Blood 2005), suggesting that Runx2/3 may contribute to core binding factor activity in the T cell lineage.


1996 ◽  
Vol 183 (3) ◽  
pp. 1111-1118 ◽  
Author(s):  
J P DiSanto ◽  
D Guy-Grand ◽  
A Fisher ◽  
A Tarakhovsky

The common cytokine receptor gamma chain (gammac), which is a functional subunit of the receptors for interleukins (IL)-2, -4, -7, -9, and -15, plays an important role in lymphoid development. Inactivation of this molecule in mice leads to abnormal T cell lymphopoiesis characterized by thymic hypoplasia and reduced numbers of peripheral T cells. To determine whether T cell development in the absence of gammac is associated with alterations of intrathymic and peripheral T cell selection, we have analyzed gammac-deficient mice made transgenic for the male-specific T cell receptor (TCR) HY (HY/gammac- mice). In HY/gammac- male mice, negative selection of autoreactive thymocytes was not diminished; however, peripheral T cells expressing transgenic TCR-alpha and -beta chains (TCR-alphaT/betaT) were absent, and extrathymic T cell development was completely abrogated. In HY/gammac- female mice, the expression of the transgenic TCR partially reversed the profound thymic hypoplasia observed in nontransgenic gammac- mice, generating increased numbers of thymocytes in all subsets, particularly the TCR-alphaT/betaT CD8+ single-positive thymocytes. Despite efficient positive selection, however, naive CD8+ TCR-alphaT/betaT T cells were severely reduced in the peripheral lymphoid organs of HY/gammac- female mice. These results not only underscore the indispensible role of gammac in thymocyte development, but also demonstrate the critical role of gammac in the maintenance and/or expansion of peripheral T cell pools.


2019 ◽  
Vol 116 (38) ◽  
pp. 19090-19097 ◽  
Author(s):  
Hong Shen ◽  
Yewei Ji ◽  
Yi Xiong ◽  
Hana Kim ◽  
Xiao Zhong ◽  
...  

Aberrant T cell development is a pivotal risk factor for autoimmune disease; however, the underlying molecular mechanism of T cell overactivation is poorly understood. Here, we identified NF–κB-inducing kinase (NIK) and IkB kinase α (IKKα) in thymic epithelial cells (TECs) as essential regulators of T cell development. Mouse TEC-specific ablation of either NIK or IKKα resulted in severe T cell-mediated inflammation, injury, and fibrosis in the liver and lung, leading to premature death within 18 d of age. NIK or IKKα deficiency abrogated medullary TEC development, and led to breakdown of central tolerance, production of autoreactive T cells, and fatal autoimmune destruction in the liver and lung. TEC-specific ablation of NIK or IKKα also impaired thymic T cell development from the double-negative through the double-positive stages and inhibited peripheral B cell development. These results unravel a hitherto unrecognized essential role of TEC-intrinsic NIK and IKKα pathways in autoimmunity and T cell-instigated chronic liver and lung diseases.


Genome ◽  
2021 ◽  
Author(s):  
Delong Feng ◽  
Zhaoqiang Li ◽  
Litao Qin ◽  
Bingtao Hao

T cells recognize the universe of foreign antigens with a diverse repertoire of T cell receptors generated by V (D)J recombination. Special AT-rich binding protein 1 (Satb1) is a chromatin organizer that plays an essential role in T cell development. The previous study showed that Satb1 regulates the re-induction of recombinase Rag1 and Rag2 in CD4+CD8+ thymocytes, affecting the secondary rearrangement of the Tcra gene. Here, we detected the repertoires of four TCR genes, Tcrd, Tcrg, Tcrb, and Tcra in the adult thymus, and explored the role of the Satb1 in shaping the TCR repertoires. We observed a strong bias in the V and J gene usages of the Tcrd and Tcrg repertoires in WT and Satb1-deleted thymocytes. Satb1 deletion had few effects on the V(D)J rearrangement and repertoire of the Tcrg, Tcrd, and Tcrb genes. The Tcra repertoire was severely impaired in Satb1-deleted thymocytes, while the primary rearrangement was relatively normal. We also found the CDR3 length of TCRα chain was significantly longer in Satb1-deleted thymocytes, which can be explained by the strong bias of the proximal Jα usage. Our results showed that Satb1 plays an essential role in shaping TCR repertoires in αβ T cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 917-917
Author(s):  
Richard XuFeng ◽  
Qiong Yang ◽  
Youzhong Yuan ◽  
Binfeng Lu ◽  
Tao Cheng ◽  
...  

Abstract Abstract 917 Post-transcriptional regulation such as RNA editing in hematopoiesis and lymphopoiesis is poorly understood. ADAR1 (adenosine deaminase acting on RNA-1) is a RNA editing enzyme essential for embryonic development. Disruption of the ADAR1 gene was shown to cause defective embryonic hematopoiesis (Wang Q et al, Science 2000). Moreover, we have recently obtained direct evidence for the preferential effect of ADAR1 deletion on adult hematopoietic progenitor cells as opposed to the more primitive cells via a RNA-editing dependent mechanism by different conditional gene deletion strategies (Xufeng R et al PNAS 2009, in press). To further determine the role of ADAR1 in T cell development, we generated a mouse model in which ADAR1 was deleted specifically in T lymphocytes by interbreeding ADAR1lox/lox mice with Lck-Cre transgenic mice. In our current study, we report that ADAR1 is essential for T cell differentiation at the late progenitor stage in the thymus, coincident with T cell receptor-α/β expression. In ADAR1lox/loxLck-Cre mice, mature T cells decreased dramatically in peripheral blood, spleen and lymph nodes in comparison to littermate controls. In the thymus, the production of CD4+/CD8+ double positive cells was severely impaired and massive cell death was observed in pre-T cell populations. Within the pro-T cells, ADAR1 deletion resulted in a significant decrease of late progenitor cells but not early progenitor subsets. In both pro-T and pre-T cell stages, defective T cell development preferentially occurred in the beta chain positive cells, but was not apparent in gamma/delta T cells. Our data demonstrated an indispensable role of ADAR1 in early T cell differentiation that correlated with T cell receptor beta chain expression, thereby indicating that RNA editing by ADAR1 is an essential event in T cell development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 607-612 ◽  
Author(s):  
Satoru Kumaki ◽  
Naoto Ishii ◽  
Masayoshi Minegishi ◽  
Shigeru Tsuchiya ◽  
David Cosman ◽  
...  

X-linked severe combined immunodeficiency (X-SCID) is characterized by an absent or diminished number of T cells and natural-killer (NK) cells with a normal or elevated number of B cells, and results from mutations of the γc chain. The γc chain is shared by interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15 receptors. Recently, a survival signal through the IL-7 receptor  (IL-7R) chain was shown to be important for T-cell development in mice and was suggested to contribute to the X-SCID phenotype. In the present study, we examined function of a mutant γc chain (A156V) isolated from an X-SCID patient and found that T cells expressing the mutant γc chain were selectively impaired in their responses to IL-4 or IL-7 compared with the wild-type γc chain expressing cells although responses to IL-2 or IL-15 were relatively maintained. The result shows that IL-4– and/or IL-7–induced signaling through the γc chain is critical for T-cell development and plays an important role in the development of the X-SCID phenotype.


Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3410-3418 ◽  
Author(s):  
Laijun Lai ◽  
Cheng Cui ◽  
Jingjun Jin ◽  
Zhifang Hao ◽  
Qiuhong Zheng ◽  
...  

Abstract We have reported that mouse embryonic stem cells (mESCs) can be selectively induced in vitro to differentiate into thymic epithelial cell progenitors (TEPs). When placed in vivo, these mESC-derived TEPs differentiate into cortical and medullary thymic epithelial cells, reconstitute the normal thymic architecture, and enhance thymocyte regeneration after syngeneic BM transplantation (BMT). Here, we show that transplantation of mESC-derived TEPs results in the efficient establishment of thymocyte chimerism and subsequent generation of naive T cells in both young and old recipients of allo-geneic BM transplant. GVHD was not induced, whereas graft-versus-tumor activity was significantly enhanced. Importantly, the reconstituted immune system was tolerant to host, mESC, and BM transplant donor antigens. Therefore, ESC-derived TEPs may offer a new approach for the rapid and durable correction of T-cell immune deficiency after BMT, and the induction of tolerance to ESC-derived tissue and organ transplants. In addition, ESC-derived TEPs may also have use as a means to reverse age-dependent thymic involution, thereby enhancing immune function and decreasing infection rates in the elderly.


Sign in / Sign up

Export Citation Format

Share Document