scholarly journals The Pathogenesis of Eosinophilic Asthma: A Positive Feedback Mechanism That Promotes Th2 Immune Response via Filaggrin Deficiency

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Gao ◽  
Jiuyu Gong ◽  
Mi Mu ◽  
Yujin Zhu ◽  
Wenjuan Wang ◽  
...  

Eosinophilic asthma (EA) is a common subtype of asthma and often progresses to severe disease. In order to understand its pathogenesis, targeted next-generation gene sequencing was performed on 77 Chinese EA patients and 431 Chinese healthy controls to obtain differential genomic variations. Among the 41 Single Nucleotide Polymorphisms (SNPs) screened for mutation sites in more than 3 patients, filaggrin gene FLG rs192116923 T>G and FLG rs75235053 C>G were newly found to be associated with EA patients with atopic dermatitis (AD) (P <0.001) and severe EA (P=0.032), respectively. Filaggrin has been shown to be mainly expressed in epithelial cells and plays an important role in formation of an effective skin barrier. Bioinformatic analysis indicated FLG rs192116923 T>G may increase the binding of Smad3 to transmit TGF-β1 signaling, and thereby inhibit filaggrin expression, and FLG rs75235053 C>G may add new splicing sites to reduce filaggrin monomers. It has been known that the level of Th2 cytokine IL-4 is increased in EA patients, and IL-4 increases airway epithelial permeability and enhances inflammatory response through some unclear mechanisms. To figure out whether filaggrin is involved in immune responses in asthma, we have treated human respiratory epithelial cell line BEAS-2B cells with IL-4 and found that the expression levels of filaggrin and E-cadherin decreased significantly in a time and dose-dependent manner, suggesting that IL-4 increased airway epithelial permeability by reducing filaggrin and adhesion molecule. In addition, in our study, IL-4 increased the expression of epithel-derived inflammatory cytokines IL-33 and TSLP which further enhanced the Th2 inflammatory response. To investigate the role of filaggrin in development of EA, knockdown filaggrin with siRNA revealed a decrease in E-cadherin levels, which were further down-regulated by IL-4 stimulation. Knockdown of filaggrin alone did not affect the levels of IL-33 and TSLP, but further exacerbated the decrease of IL-33/TSLP caused by IL-4, suggesting that filaggrin may involve in IL-4R signaling pathway to regulate the level of IL-33/TSLP. In conclusion, in the Th2 cytokine milieu of asthma, FLG deficient mutation in airway epithelial cells may increase the epithelial permeability and the expression of IL-33/TSLP which positively feedback the Th2 inflammation response.

1997 ◽  
Vol 272 (3) ◽  
pp. L512-L520 ◽  
Author(s):  
S. Becker ◽  
W. Reed ◽  
F. W. Henderson ◽  
T. L. Noah

Infection of airway epithelial cells with respiratory syncytial virus (RSV) results in the production of a restricted number of cytokines, which may modulate the inflammatory response to infection. To get a better understanding of epithelial cell-mediated inflammatory processes in RSV disease, the aim of the present study was to identify the production of mononuclear cell/eosinophil/mast cell inflammatory chemokines [monocyte chemotactic protein (MCP)-1, MCP-3, macrophage inflammatory protein-1beta, and RANTES] during productive RSV infection in airway epithelial cells. Normal human primary bronchial epithelial cell cultures, nasal epithelial cell explants, and the BEAS-2B airway epithelial cell line were inoculated with RSV, and chemokine induction was assessed during the phase of logarithmic increase in infectious virus production. Only RANTES was found to increase in epithelial cell cultures in an infection-dependent manner. Furthermore, RANTES was released only by RSV-producing cells. To determine whether RANTES was induced by RSV infection in vivo, RANTES was measured in nasal lavage fluids (NLF) from children with RSV-positive and RSV-negative upper respiratory infection and children when they were well. RANTES was increased significantly during RSV infection (128 +/- 38 pg/ml NFL) compared with non-RSV infection (42 +/- 12 pg/ml NFL) and with asymptomatic baseline (13 +/- 4 ng/ml NFL) in the same children. Because RANTES is an effective eosinophil and memory T cell chemoattractant and activator and because eosinophil-dominated inflammation is a hallmark of asthmatic airways, RANTES may play a role in the pathogenesis of RSV-induced exacerbations of airway reactivity and wheezing.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Maria Elena Monzon Medina ◽  
Monica Valencia ◽  
Rosanna Malbran Forteza ◽  
Marina Casalino-Matsuda

2020 ◽  
Vol 318 (4) ◽  
pp. C732-C739
Author(s):  
Fangyi Liu ◽  
Xiao Wang ◽  
Hua Geng ◽  
Heng-Fu Bu ◽  
Peng Wang ◽  
...  

Sirtuin 6 (Sirt6) is predominantly expressed in epithelial cells in intestinal crypts. It plays an important role in protecting intestinal epithelial cells against inflammatory injury. Previously, we found that colitis is associated with the downregulation of Sirt6 protein in the intestines. Here, we report that murine interferon-γ (Ifnγ) inhibits Sirt6 protein but not mRNA expression in young adult mouse colonocytes (YAMC, a mouse colonic epithelial cell line) in a dose- and time-dependent manner. Using microRNA array analysis, we showed that Ifnγ induces expression of miR-92b in YAMC cells. With in silico analysis, we found that the Sirt6 3′-untranslated region (UTR) contains a putative binding site for miR-92b. Luciferase assay showed that Ifnγ inhibited Sirt6 3′-UTR activity and this effect was mimicked by miR-92b via directly targeting the miR-92b seed site in the 3′-UTR of Sirt6 mRNA. Furthermore, Western blot demonstrated that miR-92b downregulated Sirt6 protein expression in YAMC cells. Blocking miR-92b with a specific inhibitor attenuated the inhibitory effect of Ifnγ on Sirt6 protein expression in the cells. Collectively, our data suggest that Ifnγ inhibits Sirt6 protein expression in intestinal epithelial cells via a miR-92b-mediated mechanism. miR-92b may be a novel therapeutic target for rescuing Sirt6 protein levels in intestinal epithelial cells, thereby protecting against intestinal mucosal injury caused by inflammation.


Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 232 ◽  
Author(s):  
Soshi Seike ◽  
Masaya Takehara ◽  
Keiko Kobayashi ◽  
Masahiro Nagahama

Clostridium perfringens strains B and C cause fatal intestinal diseases in animals. The secreted pore-forming toxin delta-toxin is one of the virulence factors of the strains, but the mechanism of intestinal pathogenesis is unclear. Here, we investigated the effects of delta-toxin on the mouse ileal loop. Delta-toxin caused fluid accumulation and intestinal permeability to fluorescein isothiocyanate (FITC)-dextran in the mouse ileal loop in a dose- and time-dependent manner. Treatment with delta-toxin induced significant histological damage and shortening of villi. Delta-toxin activates a disintegrin and metalloprotease (ADAM) 10, leading to the cleavage of E-cadherin, the epithelial adherens junction protein, in human intestinal epithelial Caco-2 cells. In this study, E-cadherin immunostaining in mouse intestinal epithelial cells was almost undetectable 1 h after toxin treatment. ADAM10 inhibitor (GI254023X) blocked the toxin-induced fluid accumulation and E-cadherin loss in the mouse ileal loop. Delta-toxin stimulated the shedding of intestinal epithelial cells. The shedding cells showed the accumulation of E-cadherin in intracellular vesicles and the increased expression of active caspase-3. Our findings demonstrate that delta-toxin causes intestinal epithelial cell damage through the loss of E-cadherin cleaved by ADAM10.


Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Patrick J. Messerschmitt ◽  
Ashley N. Rettew ◽  
Nicholas O. Schroeder ◽  
Robert E. Brookover ◽  
Avanti P. Jakatdar ◽  
...  

β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.


1997 ◽  
Vol 136 (4) ◽  
pp. 919-934 ◽  
Author(s):  
Jani E. Lewis ◽  
James K. Wahl ◽  
Kristin M. Sass ◽  
Pamela J. Jensen ◽  
Keith R. Johnson ◽  
...  

Squamous epithelial cells have both adherens junctions and desmosomes. The ability of these cells to organize the desmosomal proteins into a functional structure depends upon their ability first to organize an adherens junction. Since the adherens junction and the desmosome are separate structures with different molecular make up, it is not immediately obvious why formation of an adherens junction is a prerequisite for the formation of a desmosome. The adherens junction is composed of a transmembrane classical cadherin (E-cadherin and/or P-cadherin in squamous epithelial cells) linked to either β-catenin or plakoglobin, which is linked to α-catenin, which is linked to the actin cytoskeleton. The desmosome is composed of transmembrane proteins of the broad cadherin family (desmogleins and desmocollins) that are linked to the intermediate filament cytoskeleton, presumably through plakoglobin and desmoplakin. To begin to study the role of adherens junctions in the assembly of desmosomes, we produced an epithelial cell line that does not express classical cadherins and hence is unable to organize desmosomes, even though it retains the requisite desmosomal components. Transfection of E-cadherin and/or P-cadherin into this cell line did not restore the ability to organize desmosomes; however, overexpression of plakoglobin, along with E-cadherin, did permit desmosome organization. These data suggest that plakoglobin, which is the only known common component to both adherens junctions and desmosomes, must be linked to E-cadherin in the adherens junction before the cell can begin to assemble desmosomal components at regions of cell–cell contact. Although adherens junctions can form in the absence of plakoglobin, making use only of β-catenin, such junctions cannot support the formation of desmosomes. Thus, we speculate that plakoglobin plays a signaling role in desmosome organization.


2004 ◽  
Vol 287 (5) ◽  
pp. L928-L935 ◽  
Author(s):  
Zhenyue Tong ◽  
Beate Illek ◽  
Vikash J. Bhagwandin ◽  
George M. Verghese ◽  
George H. Caughey

Prostasin is a tryptic peptidase expressed in prostate, kidney, lung, and airway. Mammalian prostasins are related to Xenopus channel-activating protease, which stimulates epithelial Na+ channel (ENaC) activity in frogs. In human epithelia, prostasin is one of several membrane peptidases proposed to regulate ENaC. This study tests the hypothesis that prostasin can regulate ENaC in cystic fibrosis epithelia in which excessive Na+ uptake contributes to salt and water imbalance. We show that prostasin mRNA and protein are strongly expressed by human airway epithelial cell lines, including immortalized JME/CF15 nasal epithelial cells homozygous for the ΔF508 cystic fibrosis mutation. Epithelial cells transfected with vectors encoding recombinant soluble prostasin secrete active, tryptic peptidase that is highly sensitive to inactivation by aprotinin. When studied as monolayers in Ussing chambers, JME/CF15 cells exhibit amiloride-sensitive, transepithelial Na+ currents that are markedly diminished by aprotinin, suggesting regulation by serine-class peptidases. Overproduction of membrane-anchored prostasin in transfected JME/CF15 cells does not augment Na+ currents, and trypsin-induced increases are small, suggesting that baseline serine peptidase-dependent ENaC activation is maximal in these cells. To probe prostasin’s involvement in basal ENaC activity, we silenced expression of prostasin using short interfering RNA targeting of prostasin mRNA’s 3′-untranslated region. This drops ENaC currents to 26 ± 9% of baseline. These data predict that prostasin is a major regulator of ENaC-mediated Na+ current in ΔF508 cystic fibrosis epithelia and suggest that airway prostasin is a target for therapeutic inhibition to normalize ion current in cystic fibrosis airway.


1997 ◽  
Vol 272 (5) ◽  
pp. L888-L896 ◽  
Author(s):  
S. Van Wetering ◽  
S. P. Mannesse-Lazeroms ◽  
M. A. Van Sterkenburg ◽  
M. R. Daha ◽  
J. H. Dijkman ◽  
...  

Neutrophils play an important role in inflammatory processes in the lung and may cause tissue injury through, for example, release of proteinases such as neutrophil elastase. In addition to neutrophil elastase, stimulated neutrophils also release small nonenzymatic and cationic polypeptides termed defensins. The aim of the present study was to investigate whether defensins induce interleukin (IL)-8 expression in cells of the A549 lung epithelial cell line and in human primary bronchial epithelial cells (PBEC). Supernatants of defensin-treated A549 cells contained increased neutrophil chemotactic activity (16-fold) that was inhibited by antibodies against IL-8. Concurrently, within 3 and 6 h, defensins significantly increased the IL-8 levels in supernatants of both A549 cells (n = 6, P < 0.05 and P < 0.01, respectively) and PBEC (n = 4, P < 0.001 and P < 0.001, respectively). This defensin-induced increase was fully inhibited by the serine proteinase inhibitor alpha 1-proteinase inhibitor. In addition, defensins also increased IL-8 mRNA levels (12-fold); this increase was dependent on de novo mRNA synthesis and did not require protein synthesis. Furthermore, defensins did not affect IL-8 mRNA stability, indicating that the enhanced IL-8 expression was due to increased transcription. Our findings suggest that defensins, released by stimulated neutrophils, stimulate IL-8 synthesis by airway epithelial cells and thus may mediate the recruitment of additional neutrophils into the airways.


2006 ◽  
Vol 80 (11) ◽  
pp. 5301-5307 ◽  
Author(s):  
Michael A. James ◽  
John H. Lee ◽  
Aloysius J. Klingelhutz

ABSTRACT Infection with human papillomavirus (HPV) is a critical factor in the pathogenesis of most cervical cancers and some aerodigestive cancers. The HPV E6 oncoprotein from high-risk HPV types contributes to the immortalization and transformation of cells by multiple mechanisms, including degradation of p53, transcriptional activation of human telomerase reverse transcriptase (hTERT), and degradation of several proteins containing PDZ domains. The ability of E6 to bind PDZ domain-containing proteins is independent of p53 degradation or hTERT activation but does correlate with oncogenic potential (R. A. Watson, M. Thomas, L. Banks, and S. Roberts, J. Cell Sci. 116:4925-4934, 2003) and is essential for induction of epithelial hyperplasia in vivo (M. L. Nguyen, M. M. Nguyen, D. Lee, A. E. Griep, and P. F. Lambert, J. Virol. 77:6957-6964, 2003). In this study, we found that HPV type 16 E6 was able to activate NF-κB in airway epithelial cells through the induction of nuclear binding activity of p52-containing NF-κB complexes in a PDZ binding motif-dependent manner. Transcript accumulation for the NF-κB-responsive antiapoptotic gene encoding cIAP-2 and binding of nuclear factors to the proximal NF-κB binding site of the cIAP-2 gene promoter are induced by E6 expression. Furthermore, E6 is able to protect cells from TNF-induced apoptosis. All of these E6-dependent phenotypes are dependent on the presence of the PDZ binding motif of E6. Our results imply a role for targeting of PDZ proteins by E6 in NF-κB activation and protection from apoptosis in airway epithelial cells.


2015 ◽  
Vol 34 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Akiko Honda ◽  
Kenshi Tsuji ◽  
Yugo Matsuda ◽  
Tomohiro Hayashi ◽  
Wataru Fukushima ◽  
...  

Various metals produced from human activity are ubiquitously detected in ambient air. The metals may lead to induction and/or exacerbation of respiratory diseases, but the significant metals and factors contributing to such diseases have not been identified. To compare the effects of each metal and different oxidation states of metals on human airway, we examined the viability and production of interleukin (IL)-6 and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway epithelial cells were exposed to Mn2+, V4+, V5+, Cr3+, Cr6+, Zn2+, Ni2+, and Pb2+ at a concentration of 0.5, 5, 50, or 500 μmol/L for 24 hours. Mn and V decreased the cell viability in a concentration-dependent manner, and V5+ tended to have a greater effect than V4+. The Cr decreased the cell viability, and (Cr+6) at concentrations of 50 and 500 μmol/L was more toxic than (Cr+3). Zn at a concentration of 500 μmol/L greatly decreased the cell viability, whereas Ni at the same concentration increased it. Pb produced fewer changes. Mn and Ni at a concentration of 500 μmol/L induced the significant production of IL-6 and IL-8. However, most of the metals including (V+4, V+5), (Cr+3, Cr+6), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present results indicate that various heavy metals have different effects on toxicity and the proinflammatory responses of airway epithelial cells, and those influences also depend on the oxidation states of the metals.


Sign in / Sign up

Export Citation Format

Share Document