scholarly journals Single-Cell TCR and Transcriptome Analysis: An Indispensable Tool for Studying T-Cell Biology and Cancer Immunotherapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Pasetto ◽  
Yong-Chen Lu

T cells have been known to be the driving force for immune response and cancer immunotherapy. Recent advances on single-cell sequencing techniques have empowered scientists to discover new biology at the single-cell level. Here, we review the single-cell techniques used for T-cell studies, including T-cell receptor (TCR) and transcriptome analysis. In addition, we summarize the approaches used for the identification of T-cell neoantigens, an important aspect for T-cell mediated cancer immunotherapy. More importantly, we discuss the applications of single-cell techniques for T-cell studies, including T-cell development and differentiation, as well as the role of T cells in autoimmunity, infectious disease and cancer immunotherapy. Taken together, this powerful tool not only can validate previous observation by conventional approaches, but also can pave the way for new discovery, such as previous unidentified T-cell subpopulations that potentially responsible for clinical outcomes in patients with autoimmunity or cancer.

2000 ◽  
Vol 74 (16) ◽  
pp. 7442-7450 ◽  
Author(s):  
Zheng W. Chen ◽  
Yun Shen ◽  
Zhongchen Kou ◽  
Chris Ibegbu ◽  
Dejiang Zhou ◽  
...  

ABSTRACT The repertoire of functional CD4+ T lymphocytes in human immunodeficiency virus type 1-infected individuals remains poorly understood. To explore this issue, we have examined the clonality of CD4+ T cells in simian immunodeficiency virus (SIV)-infected macaques by assessing T-cell receptor complementarity-determining region 3 (CDR3) profiles and sequences. A dominance of CD4+ T cells expressing particular CDR3 sequences was identified within certain Vβ-expressing peripheral blood lymphocyte subpopulations in the infected monkeys. Studies were then done to explore whether these dominant CD4+ T cells represented expanded antigen-specific cell subpopulations or residual cells remaining in the course of virus-induced CD4+ T-cell depletion. Sequence analysis revealed that these selected CDR3-bearing CD4+ T-cell clones emerged soon after infection and dominated the CD4+ T-cell repertoire for up to 14 months. Moreover, inoculation of chronically infected macaques with autologous SIV-infected cell lines to transiently increase plasma viral loads in the monkeys resulted in the dominance of these selected CDR3-bearing CD4+ T cells. Both the temporal association of the detection of these clonal cell populations with infection and the dominance of these cell populations following superinfection with SIV suggest that these cells may be SIV specific. Finally, the inoculation of staphylococcal enterotoxin B superantigen into SIV-infected macaques uncovered a polyclonal background underlying the few dominant CDR3-bearing CD4+ T cells, demonstrating that expandable polyclonal CD4+ T-cell subpopulations persist in these animals. These results support the notions that a chronic AIDS virus infection can induce clonal expansion, in addition to depletion of CD4+ T cells, and that some of these clones may be SIV specific.


2000 ◽  
Vol 7 (6) ◽  
pp. 953-959 ◽  
Author(s):  
Zhong Chen Kou ◽  
Joshua S. Puhr ◽  
Mabel Rojas ◽  
Wayne T. McCormack ◽  
Maureen M. Goodenow ◽  
...  

ABSTRACT The T-cell receptor (TCR) CDR3 length heterogeneity is formed during recombination of individual Vβ gene families. We hypothesized that CDR3 length diversity could be used to assess the fundamental differences within the TCR repertoire of CD45RA and CD45RO T-cell subpopulations. By using PCR-based spectratyping, nested primers for all 24 human Vβ families were developed to amplify CDR3 lengths in immunomagnetically selected CD45RA and CD45RO subsets within both CD4+ and CD8+ T-cell populations. Umbilical cord blood mononuclear cells or peripheral blood mononuclear cells obtained from healthy newborns, infants, and children, as well as human immunodeficiency virus (HIV)-infected children, were analyzed. All T-cell subsets from newborn and healthy children demonstrated a Gaussian distribution of CDR3 lengths in separated T-cell subsets. In contrast, HIV-infected children had a high proportion of predominant CDR3 lengths within both CD45RA and CD45RO T-cell subpopulations, most commonly in CD8+ CD45RO T cells. Sharp differences in clonal dominance and size distributions were observed when cells were separated into CD45RA or CD45RO subpopulations. These differences were not apparent in unfractionated CD4+ or CD8+ T cells from HIV-infected subjects. Sequence analysis of predominant CDR3 lengths revealed oligoclonal expansion within individual Vβ families. Analysis of the CDR3 length diversity within CD45RA and CD45RO T cells provides a more accurate measure of disturbances in the TCR repertoire than analysis of unfractionated CD4 and CD8 T cells.


2021 ◽  
Author(s):  
Zachary L Skidmore ◽  
Hans Rindt ◽  
Shirley Chu ◽  
Bryan Fisk ◽  
Catrina Fronick ◽  
...  

Background: Spontaneous cancers in companion dogs are increasingly recognized as robust models of human disease. This recognition has led to translational clinical trials in companion dogs with osteosarcoma, lymphoma, melanoma, squamous cell carcinoma, and soft tissue sarcoma. The ability to precisely track tumor-specific immune responses in such clinical trials would benefit from reagents to perform species-specific single cell T cell receptor sequencing (scTCRseq). This technology defines clones of T cells reacting to immune interventions and can help identify the specific epitope of response. Single cell gene expression data give insights into the activity and polarization of the T cell. To date, scTCRseq has not been demonstrated for canine samples. Methods: Samples from two responding dogs in a trial of an autologous deglycosylated melanoma vaccine were selected to demonstrate applicability of scTCRseq in a cancer immunotherapy setting. A single-cell suspension of cryopreserved peripheral blood mononuclear cells (PBMC) was prepared for 10X single cell sequencing. Full length 10X cDNA was amplified using a custom-designed nested PCR of the alpha/beta V(D)J region. A library made from this enriched product (scTCRseq) and a 10X gene expression (GEX) library (scRNAseq) were sequenced on the NovaSeq 6000. Results: 1,850-2,172 estimated V(D)J-expressing cells yielded 87-103.7 million reads with 73.8%-75.8% mapped to a V(D)J gene (beta/alpha chains ratio 1.5:1). 43 TRAJ, 29 TRAV, 12 TRBJ, and 22 TRBV gene segments were observed representing 72.9%, 51.8%, 100%, and 62.9% of all known V and J gene segments respectively. A large diversity of clonotypes was captured with 966-1,253 TRA/TRB clonotypes identified. Both dogs also exhibited a small number of highly abundant T cell clonotypes suggesting the presence of an anti-tumor T cell population. GEX enriched libraries successfully defined large clusters of CD8+ and CD4+ T cells that overlapped with V(D)J-expressing cells. Discussion: The developed reagents successfully generated scTCRseq data, for the first time, which allowed the T cell repertoire to be surveyed in dogs responding to anti-tumor immunotherapy. These reagents will allow longitudinal tracking of anti-tumor T cell dynamics in canine cancer immunotherapy trials.


2020 ◽  
Vol 22 (1) ◽  
pp. 274
Author(s):  
Claudia Curci ◽  
Angela Picerno ◽  
Nada Chaoul ◽  
Alessandra Stasi ◽  
Giuseppe De Palma ◽  
...  

Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.


1979 ◽  
Vol 149 (1) ◽  
pp. 228-233 ◽  
Author(s):  
A B Reske-Kunz ◽  
M P Scheid ◽  
E A Boyse

Mice of the HRS strain, which carry the mutant gene hr, were examined for abnormalities in representation of the three T-cell sets Ly1, Ly23, and Ly123 in the spleen. The salient feature of hr/hr mice, which are immunologically deficient, in comparison with +/hr segregants, was a gross disproportion in numbers of cells belonging to the Ly1 and Ly123 sets, at the age of 3--3.5 mo. At this age, Ly123 cells of hr/hr spleen outnumbered Ly1 cells by 2:1, whereas in +/hr spleens Ly123 cells were outnumbered by approximately 1:2. Cells from pooled lymph nodes of hr/hr mice did not show a correspondingly gross disporprotion of Ly1 and Ly123 cells. Total counts of splenic T cells, and of B cells, were not significantly different in hr/hr and +/hr mice.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A204-A204
Author(s):  
Jack Reid ◽  
Shihong Zhang ◽  
Ariunaa Munkhbat ◽  
Matyas Ecsedi ◽  
Megan McAfee ◽  
...  

BackgroundT Cell Receptor (TCR)-T cell therapies have shown some promising results in cancer clinical trials, however the efficacy of treatment remains suboptimal. Outcomes could potentially be improved by utilizing highly functional TCRs for future trials. Current TCR discovery methods are relatively low throughput and rely on synthesis and screening of individual TCRs based on tetramer binding and peptide specificity, which is costly and labor intensive. We have developed and validated a pooled approach relying on directly cloned TCRs transduced into a fluorescent Jurkat reporter system (figure 1). This approach provides an unbiased, high-throughput method for TCR discovery.MethodsAs a model for POTS, T cells specific for a peptide derived adenovirus structural protein were sorted on tetramer and subjected to 10x single cell VDJ analysis. Pools of randomly paired TCR alpha and beta chains were cloned from the 10x cDNA into a lentiviral vector and transduced into a Jurkat reporter cells. Consecutive stimulations with cognate antigen followed by cell sorts were performed to enrich for functional TCRs. Full length TCRab pools were sequenced by Oxford Nanopore Technologies (ONT) and compared to a 10x dataset to find naturally paired TCRs.ResultsComparison between the ex vivo single cell VDJ sequencing and ONT sequencing of the transduced antigen specific TCRs showed more than 99% of the TCR pairs found in reporter positive Jurkat cells were naturally paired TCRs. The functionality of 8 TCR clonotypes discovered using POTS were compared and clone #2 showed the strongest response. Of the selected clonotypes, clone #2 showed a low frequency of 0.9% in the ex vivo single cell VDJ sequencing. After the first round of stimulation and sequencing, clone #2 takes up of 5% of all reporter-positive clones. The abundance of clone #2 further increased to 17% after another round of stimulation, sorting and sequencing, suggesting this method can retrieve and enrich for highly functional antigen specific TCRs.Abstract 192 Figure 1Outline of the POTS workflow.ConclusionsPOTS provides a high-throughput method for discovery of naturally paired, high-avidity T cell receptors. This method mitigates bias introduced by T cell differentiation state by screening TCRs in a clonal reporter system. Additionally, POTS allows for screening of low abundance clones when compared with traditional TCR discovery techniques. Pooled TCRs could also be screened in vivo with primary T cells in a mouse model to screen for the most functional and physiologically fit TCR for cancer treatment.


2021 ◽  
Vol 9 (11) ◽  
pp. 1252-1261
Author(s):  
Uri Greenbaum ◽  
Ecaterina I. Dumbrava ◽  
Amadeo B. Biter ◽  
Cara L. Haymaker ◽  
David S. Hong

2001 ◽  
Vol 194 (10) ◽  
pp. 1473-1483 ◽  
Author(s):  
Isabel Ferrero ◽  
Anne Wilson ◽  
Friedrich Beermann ◽  
Werner Held ◽  
H. Robson MacDonald

A particular feature of γδ T cell biology is that cells expressing T cell receptor (TCR) using specific Vγ/Vδ segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all γδ T cells express Vγ3/Vδ1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vγ3+ thymocytes. The role of γδ TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR δ chain (Vδ6.3-Dδ1-Dδ2-Jδ1-Cδ), which can pair with Vγ3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vδ6.3Tg mice DETC were present and virtually all of them express Vδ6.3. However, DETC were absent in TCR-δ−/− Vδ6.3Tg mice, despite the fact that Vδ6.3Tg γδ T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vδ6.3Tg mice, a high proportion of in-frame Vδ1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-δ (most probably Vδ1) was required for the development of Vδ6.3+ epidermal γδ T cells. Collectively our data demonstrate that TCR specificity is essential for the development of γδ T cells in the epidermis. Moreover, they show that the TCR-δ locus is not allelically excluded.


2020 ◽  
Vol 6 (27) ◽  
pp. eaaz7809 ◽  
Author(s):  
Jan A. Rath ◽  
Gagan Bajwa ◽  
Benoit Carreres ◽  
Elisabeth Hoyer ◽  
Isabelle Gruber ◽  
...  

Transgenic coexpression of a class I–restricted tumor antigen–specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4+ T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4+ T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4+ and CD8+ T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8+ T cell function and preserved less differentiated CD4+ and CD8+ T cells after tumor challenge. TCR8+CD4+ T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation– and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document