scholarly journals A Synthetic Peptide Designed to Neutralize Lipopolysaccharides Attenuates Metaflammation and Diet-Induced Metabolic Derangements in Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Shireen Mohammad ◽  
Sura Al Zoubi ◽  
Debora Collotta ◽  
Nadine Krieg ◽  
Bianka Wissuwa ◽  
...  

Metabolic endotoxemia has been suggested to play a role in the pathophysiology of metaflammation, insulin-resistance and ultimately type-2 diabetes mellitus (T2DM). The role of endogenous antimicrobial peptides (AMPs), such as the cathelicidin LL-37, in T2DM is unknown. We report here for the first time that patients with T2DM compared to healthy volunteers have elevated plasma levels of LL-37. In a reverse-translational approach, we have investigated the effects of the AMP, peptide 19-2.5, in a murine model of high-fat diet (HFD)-induced insulin-resistance, steatohepatitis and T2DM. HFD-fed mice for 12 weeks caused obesity, an impairment in glycemic regulations, hypercholesterolemia, microalbuminuria and steatohepatitis, all of which were attenuated by Peptide 19-2.5. The liver steatosis caused by feeding mice a HFD resulted in the activation of nuclear factor kappa light chain enhancer of activated B cells (NF-ĸB) (phosphorylation of inhibitor of kappa beta kinase (IKK)α/β, IκBα, translocation of p65 to the nucleus), expression of NF-ĸB-dependent protein inducible nitric oxide synthase (iNOS) and activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, all of which were reduced by Peptide 19-2.5. Feeding mice, a HFD also resulted in an enhanced expression of the lipid scavenger receptor cluster of differentiation 36 (CD36) secondary to activation of extracellular signal-regulated kinases (ERK)1/2, both of which were abolished by Peptide 19-2.5. Taken together, these results demonstrate that the AMP, Peptide 19-2.5 reduces insulin-resistance, steatohepatitis and proteinuria. These effects are, at least in part, due to prevention of the expression of CD36 and may provide further evidence for a role of metabolic endotoxemia in the pathogenesis of metaflammation and ultimately T2DM. The observed increase in the levels of the endogenous AMP LL-37 in patients with T2DM may serve to limit the severity of the disease.

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 734
Author(s):  
Pietro Antonuccio ◽  
Herbert Ryan Marini ◽  
Antonio Micali ◽  
Carmelo Romeo ◽  
Roberta Granese ◽  
...  

Varicocele is an age-related disease with no current medical treatments positively impacting infertility. Toll-like receptor 4 (TLR4) expression is present in normal testis with an involvement in the immunological reactions. The role of peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor, in fertility is still unclear. N-Palmitoylethanolamide (PEA), an emerging nutraceutical compound present in plants and animal foods, is an endogenous PPAR-α agonist with well-demonstrated anti-inflammatory and analgesics characteristics. In this model of mice varicocele, PPAR-α and TLR4 receptors’ roles were investigated through the administration of ultra-micronized PEA (PEA-um). Male wild-type (WT), PPAR-α knockout (KO), and TLR4 KO mice were used. A group underwent sham operation and administration of vehicle or PEA-um (10 mg/kg i.p.) for 21 days. Another group (WT, PPAR-α KO, and TLR4 KO) underwent surgical varicocele and was treated with vehicle or PEA-um (10 mg/kg i.p.) for 21 days. At the end of treatments, all animals were euthanized. Both operated and contralateral testes were processed for histological and morphometric assessment, for PPAR-α, TLR4, occludin, and claudin-11 immunohistochemistry and for PPAR-α, TLR4, transforming growth factor-beta3 (TGF-β3), phospho-extracellular signal-Regulated-Kinase (p-ERK) 1/2, and nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) Western blot analysis. Collectively, our data showed that administration of PEA-um revealed a key role of PPAR-α and TLR4 in varicocele pathophysiology, unmasking new nutraceutical therapeutic targets for future varicocele research and supporting surgical management of male infertility.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Lucía Fuentes ◽  
Tamás Rőszer ◽  
Mercedes Ricote

Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs) have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs), which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.


2013 ◽  
Vol 125 (11) ◽  
pp. 501-511 ◽  
Author(s):  
Valérie Lebrun ◽  
Olivier Molendi-Coste ◽  
Nicolas Lanthier ◽  
Christine Sempoux ◽  
Patrice D. Cani ◽  
...  

Alcohol consumption is a major cause of liver disease. It also associates with increased cardiovascular risk and Type 2 diabetes. ALD (alcoholic liver disease) and NAFLD (non-alcoholic fatty liver disease) share pathological features, pathogenic mechanisms and pattern of disease progression. In NAFLD, steatosis, lipotoxicity and liver inflammation participate to hepatic insulin resistance. The aim of the present study was to verify the effect of alcohol on hepatic insulin sensitivity and to evaluate the role of alcohol-induced steatosis and inflammation on glucose homoeostasis. C57BL/6J mice were fed for 20 days a modified Lieber–DeCarli diet in which the alcohol concentration was gradually increased up to 35% of daily caloric intake. OH (alcohol liquid diet)-fed mice had liver steatosis and inflammatory infiltration. In addition, these mice developed insulin resistance in the liver, but not in muscles, as demonstrated by euglycaemic–hyperinsulinaemic clamp and analysis of the insulin signalling cascade. Treatment with the PPAR-α (peroxisome-proliferator-activated receptor-α) agonist Wy14,643 protected against OH-induced steatosis and KC (Kupffer cell) activation and almost abolished OH-induced insulin resistance. As KC activation may modulate insulin sensitivity, we repeated the clamp studies in mice depleted in KC to decipher the role of macrophages. Depletion of KC using liposomes-encapsuled clodronate in OH-fed mice failed both to improve hepatic steatosis and to restore insulin sensitivity as assessed by clamp. Our study shows that chronic alcohol consumption induces steatosis, KC activation and hepatic insulin resistance in mice. PPAR-α agonist treatment that prevents steatosis and dampens hepatic inflammation also prevents alcohol-induced hepatic insulin resistance. However, KC depletion has little impact on OH-induced metabolic disturbances.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1435
Author(s):  
Francesca Oppedisano ◽  
Carolina Muscoli ◽  
Vincenzo Musolino ◽  
Cristina Carresi ◽  
Roberta Macrì ◽  
...  

Hyperlipidemia and insulin-resistance are often associated with Non-Alcoholic Fatty Liver Disease (NAFLD) thereby representing a true issue worldwide due to increased risk of developing cardiovascular and systemic disorders. Although clear evidence suggests that circulating fatty acids contribute to pathophysiological mechanisms underlying NAFLD and hyperlipidemia, further studies are required to better identify potential beneficial approaches for counteracting such a disease. Recently, several artichoke extracts have been used for both reducing hyperlipidemia, insulin-resistance and NAFLD, though the mechanism is unclear. Here we used a wild type of Cynara Cardunculus extract (CyC), rich in sesquiterpens and antioxidant active ingredients, in rats fed a High Fat Diet (HFD) compared to a Normal Fat Diet (NFD). In particular, in rats fed HFD for four consecutive weeks, we found a significant increase of serum cholesterol, triglyceride and serum glucose. This effect was accompanied by increased body weight and by histopathological features of liver steatosis. The alterations of metabolic parameters found in HFDs were antagonised dose-dependently by daily oral supplementation of rats with CyC 10 and 20 mg/kg over four weeks, an effect associated to significant improvement of liver steatosis. The effect of CyC (20 mg/kg) was also associated to enhanced expression of both OCTN1 and OCTN2 carnitine-linked transporters. Thus, present data suggest a contribution of carnitine system in the protective effect of CyC in diet-induced hyperlipidemia, insulin-resistance and NAFLD.


Obesity ◽  
2008 ◽  
Vol 16 (3) ◽  
pp. 677-683 ◽  
Author(s):  
Ebe D'Adamo ◽  
Mario Impicciatore ◽  
Rita Capanna ◽  
M. Loredana Marcovecchio ◽  
Fabio G. Masuccio ◽  
...  

Endocrinology ◽  
2019 ◽  
Vol 160 (9) ◽  
pp. 2061-2073 ◽  
Author(s):  
Tracy C S Mak ◽  
Dawn E W Livingstone ◽  
Mark Nixon ◽  
Brian R Walker ◽  
Ruth Andrew

Abstract Inhibition of 5α-reductases impairs androgen and glucocorticoid metabolism and induces insulin resistance in humans and rodents. The contribution of hepatic glucocorticoids to these adverse metabolic changes was assessed using a liver-selective glucocorticoid receptor (GR) antagonist, A-348441. Mice lacking 5α-reductase 1 (5αR1-KO) and their littermate controls were studied during consumption of a high-fat diet, with or without A-348441(120 mg/kg/d). Male C57BL/6 mice (age, 12 weeks) receiving dutasteride (1.8 mg/kg/d)) or vehicle with consumption of a high-fat diet, with or without A-348441, were also studied. In the 5αR1-KO mice, hepatic GR antagonism improved diet-induced insulin resistance but not more than that of the controls. Liver steatosis was not affected by hepatic GR antagonism in either 5αR1KO mice or littermate controls. In a second model of 5α-reductase inhibition using dutasteride and hepatic GR antagonism with A-348441 attenuated the excess weight gain resulting from dutasteride (mean ± SEM, 7.03 ± 0.5 vs 2.13 ± 0.4 g; dutasteride vs dutasteride plus A-348441; P < 0.05) and normalized the associated hyperinsulinemia after glucose challenge (area under the curve, 235.9 ± 17 vs 329.3 ± 16 vs 198.4 ± 25 ng/mL/min; high fat vs high fat plus dutasteride vs high fat plus dutasteride plus A-348441, respectively; P < 0.05). However, A-348441 again did not reverse dutasteride-induced liver steatosis. Thus, overall hepatic GR antagonism improved the insulin resistance but not the steatosis induced by a high-fat diet. Moreover, it attenuated the excessive insulin resistance caused by pharmacological inhibition of 5α-reductases but not genetic disruption of 5αR1. The use of dutasteride might increase the risk of type 2 diabetes mellitus and reduced exposure to glucocorticoids might be beneficial.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
L. Xia ◽  
Z. Xu ◽  
X. Zhou ◽  
F. Bergmann ◽  
N. Grabe ◽  
...  

Abstract Chronic pancreatitis (CP) is associated with elevated plasma levels of bacterial lipopolysaccharide (LPS) and we have demonstrated reduced acinar cell autophagy in human CP tissue. Therefore, we investigated the role of autophagy in experimental endotoxin-induced pancreatic injury and aimed to identify LPS in human CP tissue. Pancreatic Atg7-deficient mice were injected with a single sub-lethal dose of LPS. Expression of autophagy, apoptosis, necroptosis, and inflammatory markers was determined 3 and 24 h later utilizing immunoblotting and immunofluorescence. The presence of LPS in pancreatic tissue from mice and from patients and healthy controls was determined using immunohistochemistry, immunoblots, and chromogenic assay. Mice lacking pancreatic autophagy exhibited local signs of inflammation and were particularly sensitive to the toxic effect of LPS injection as compared to control mice. In response to LPS, Atg7Δpan mice exhibited enhanced vacuolization of pancreatic acinar cells, increase in TLR4 expression coupled to enhanced expression of NF-κΒ, JNK, and pro-inflammatory cytokines by acinar cells and enhanced infiltration by myeloid cells (but not Atg7F/F controls). Cell death was enhanced in Atg7Δpan pancreata, but only necroptosis and trypsin activation was further amplified following LPS injection along with elevated pancreatic LPS. The presence of LPS was identified in the pancreata from all 14 CP patients examined but was absent in the pancreata from all 10 normal controls. Altogether, these results support a potential role for metabolic endotoxemia in the pathogenesis of CP. Moreover, the evidence also supports the notion that autophagy plays a major cytoprotective and anti-inflammatory role in the pancreas, and blunting metabolic endotoxemia-induced CP.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiali Yang ◽  
Yunhui Ran ◽  
Yonghui Yang ◽  
Shuyi Song ◽  
Yahong Wu ◽  
...  

In obesity, macrophages and other immune cells accumulate in organs affected by insulin, leading to chronic inflammation and insulin resistance. 4-Hydroxyisoleucine (4-HIL) is a non-protein amino acid found in fenugreek seeds. 4-HIL enhances insulin sensitivity, but its mechanism is still unclear. In this study, 4-HIL intervention reduced weight gain, liver steatosis, and dyslipidemia; moreover, it increased systemic insulin sensitivity and improved insulin resistance in mice. Importantly, after administration, the accumulation of M1 like CD11c+ macrophages and inflammation in the liver and adipose tissue were reduced in the mice. 4-HIL also reduced the proportion of CD11c+ macrophages among bone marrow-derived macrophages, which were induced in vitro. These observations demonstrate a new role of 4-HIL in insulin resistance in hepatocytes and adipocytes. 4-HIL inhibits obesity-related insulin resistance by reducing inflammation and regulating the state of M1/M2 macrophages.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mengjing Li ◽  
Tao Ling ◽  
Fengmeng Teng ◽  
Chao Hu ◽  
Zhongping Su ◽  
...  

AbstractCD5 molecule like (CD5L), a member of the scavenger receptor cysteine-rich domain superfamily, plays a critical role in immune homeostasis and inflammatory disease. Acetaminophen (APAP) is a safe and effective antipyretic analgesic. However, overdose may cause liver damage or even liver failure. APAP hepatotoxicity is characterized by extensive necrotic cell death and a sterile inflammatory response, in which the role of CD5L remains to be investigated. In this study, we found that the expression of CD5L was increased in the livers of mice after APAP overdose. Furthermore, CD5L deficiency reduced the increase of alanine transaminase (ALT) level, histopathologic lesion area, c-Jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK) phosphorylation level, Transferase-Mediated dUTP Nick End-Labeling positive (TUNEL+) cells proportion, vascular endothelial cell permeability and release of inflammatory cytokines induced by excess APAP. Therefore, our findings reveal that CD5L may be a potential therapeutic target for prevention and treatment of APAP-induced liver injury.


Author(s):  
Francesca Oppedisano ◽  
Carolina Muscoli ◽  
Vincenzo Musolino ◽  
Cristina Carresi ◽  
Caterina Giancotta ◽  
...  

Hyperlipidemia and insulin-resistance are often associated with Non Alcoholic Fatty Liver Disease (NAFLD) thereby representing a true issue worldwide, due to increased risk of developing cardiovascular and systemic disorders. Although clear evidence suggests that circulating fatty acids contribute in pathophysiological mechanisms underlying NAFLD and hyperlipidemia, further studies are required for better identify potential beneficial approaches for counteracting such a disease state. Recently, several artichoke extracts have been used for both reducing hyperlipidemia, insulin-resistance and NAFLD, though the mechanism is unclear. Here we used a wild type of Cynara Cardunculus extract (CyC), rich in sesquiterpens and antioxidant active ingredients, in rats fed and High Fat Diet (HFD) compared to Normal Fat Diet (NFD). In particular, in rats fed HFD for four consecutive weeks, we found a significant increase of serum cholesterol, triglyceride and serum glucose. This effect was accompanied by increased body weight and by histopathological features of liver steatosis. The alterations of metabolic parameters found in HFD were antagonised dose-dependently by daily oral supplementation of rats with CyC 10 and 20 mg/Kg over 4 weeks, an effect associated to significant improvement of liver steatosis. The effect of CyC (20 mg/Kg) was also associated to enhanced expression of both OCTN1 and OCTN2 carnitine-linked transporters. Thus, present data suggest a contribution of carnitine system in the protective effect of CyC in diet-induced hyperlipidemia, insulin-resistance and NAFLD.


Sign in / Sign up

Export Citation Format

Share Document