scholarly journals Lumpfish (Cyclopterus lumpus) Is Susceptible to Renibacterium salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage

2021 ◽  
Vol 12 ◽  
Author(s):  
Hajarooba Gnanagobal ◽  
Trung Cao ◽  
Ahmed Hossain ◽  
My Dang ◽  
Jennifer R. Hall ◽  
...  

Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1β, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.

Parasitology ◽  
2010 ◽  
Vol 137 (12) ◽  
pp. 1749-1757 ◽  
Author(s):  
E. JEKLOVA ◽  
L. LEVA ◽  
K. KOVARCIK ◽  
J. MATIASOVIC ◽  
V. KUMMER ◽  
...  

SUMMARYEncephalitozoon cuniculiis an obligate intracellular pathogen that has a wide host distribution, but primarily affects rabbits. The aim of this study was to characterize both the cell-mediated and the antibody response in rabbits after experimental infection using 2 different infection routes: oral and ocular. SPF rabbits were infected with low (103spores) and high (107spores) infection doses. Monitored parameters included clinical signs, detection of spores in urine, antibody response detected with ELISA, and cell-mediated immunity detected by antigen-driven lymphocyte proliferation. At week 13 post-infection, half of the rabbits in each group were suppressed by intramuscular administration of dexamethasone. At week 18 post-infection, animals were euthanized. Clinical signs were mild with exacerbation after immunosuppression. Spores in urine and antigen-specific cell-mediated immunity were detected from weeks 5 and 4 post-infection, respectively. Specific IgM was detected 1 week after infection, and IgG antibodies followed 1 week later in rabbits infected with the high dose. Immunological responses were dose dependent. The authors can conclude that both oral and ocular experimental infection withE. cuniculiresulted in an immune response of the infected animals. Rabbits could be used as an experimental model for the study of ocular microsporidiosis.


2020 ◽  
Vol 98 ◽  
pp. 937-949 ◽  
Author(s):  
Khalil Eslamloo ◽  
Surendra Kumar ◽  
Albert Caballero-Solares ◽  
Hajarooba Gnanagobal ◽  
Javier Santander ◽  
...  

2013 ◽  
Vol 14 (1) ◽  
pp. 103-123 ◽  
Author(s):  
Randall L. Levings ◽  
James A. Roth

AbstractBovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 807
Author(s):  
Francisca Samsing ◽  
Pamela Alexandre ◽  
Megan Rigby ◽  
Richard S. Taylor ◽  
Roger Chong ◽  
...  

Pilchard orthomyxovirus (POMV) is an emerging pathogen of concern to the salmon industry in Australia. To explore the molecular events that underpin POMV infection, we challenged Atlantic salmon (Salmo salar) post-smolts in seawater via cohabitation. Tissue samples of the head kidney and liver were collected from moribund and surviving individuals and analyzed using transcriptome sequencing. Viral loads were higher in the head kidney compared to the liver, yet the liver presented more upregulated genes. Fish infected with POMV showed a strong innate immune response that included the upregulation of pathogen recognition receptors such as RIG-I and Toll-like receptors as well as the induction of interferon-stimulated genes (MX, ISG15). Moribund fish also presented a dramatic induction of pro-inflammatory cytokines, contributing to severe tissue damage and morbidity. An induction of major histocompatibility complex (MHC) class I genes (B2M) and markers of T cell-mediated immunity (CD8-alpha, CD8-beta, Perforin-1, Granzyme-A) was observed in both moribund fish and survivors. In addition, differential connectivity analysis showed that three key regulators (RELA/p65, PRDM1, and HLF) related to cell-mediated immunity had significant differences in connectivity in “clinically healthy” versus “clinically affected” or moribund fish. Collectively, our results show that T cell-mediated immunity plays a central role in the response of Atlantic salmon to the infection with POMV.


2011 ◽  
Vol 43 (21) ◽  
pp. 1241-1254 ◽  
Author(s):  
Luca Tacchi ◽  
James E. Bron ◽  
John B. Taggart ◽  
Christopher J. Secombes ◽  
Ralph Bickerdike ◽  
...  

The bacterium Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia (SRS), a severe disease that causes major economic losses to the Atlantic salmon aquaculture industry every year. Little is known about the infective strategy of P. salmonis, which is able to infect, survive within, and replicate inside salmonid macrophages as an intracellular parasite. Similarly there is little knowledge concerning the fish host's response to invasion by this pathogen. We have examined the transcriptional response of postsmolt Atlantic salmon ( Salmo salar) to P. salmonis at 48 h following infection in three tissues, liver, head kidney, and muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K). The infection led to a large alteration of transcriptional activity in all the tissues studied. In infected salmon 886, 207, and 153 transcripts were differentially expressed in liver, head kidney, and muscle, respectively. Assessment of enrichment for particular biological pathways by gene ontology analysis showed an upregulation of genes involved in oxidative and inflammatory responses in infected fish, indicative of the activation of the innate immune response. The downregulation of genes involved in the adaptive immune response, G protein signaling pathway, and apoptotic process in infected fish may be reflective of mechanisms used by P. salmonis to survive, replicate, and escape host defenses. There was also evidence of differential responses between studied tissues, with protein metabolism being decreased in muscle of infected fish and with a concomitant increase being shown in liver.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 450
Author(s):  
Daniela Sotomayor-Gerding ◽  
José Miguel Troncoso ◽  
Alejandro Pino ◽  
Felipe Almendras ◽  
Mónica Rubilar Diaz

Salmon rickettsial septicaemia (SRS) is the infectious disease that produces the highest losses in the Chilean salmon industry. As a new strategy for the control of SRS outbreaks, in this study we evaluated the effect of alginate-encapsulated Piscirickettsia salmonis antigens (AEPSA) incorporated in the feed as an oral vaccine to induce the immune response in Atlantic salmon (Salmo salar). Fish were distributed into three vaccination groups (injectable, oral high dose, oral low dose). Feed intake and fish growth were recorded during the trial. The P. salmonis-specific IgM levels in blood plasma were measured by ELISA. Alginate microparticles containing the antigen were effectively incorporated in fish feed to produce the oral vaccine. Incorporation of AEPSA did not affect the palatability of the feed or the fish appetite. Furthermore, the oral vaccine did not have a negative effect on fish growth. Finally, the oral vaccine (high and low dose) produced an acquired immune response (IgM) similar to the injectable vaccine, generating a statistically significant increase in the IgM levels at 840-degree days for both experimental groups. These findings suggest that AEPSA incorporated in the feed can be an effective alternative to boost the immune response in Atlantic salmon (S. salar).


Sign in / Sign up

Export Citation Format

Share Document