scholarly journals VISTA Blockade Aggravates Bone Loss in Experimental Murine Apical Periodontitis

2021 ◽  
Vol 12 ◽  
Author(s):  
Fuhua Yang ◽  
Yifei Zhang ◽  
Zhi Chen ◽  
Lu Zhang

V-domain Ig suppressor of T cell activation (VISTA) is a novel coinhibitory immune checkpoint molecule that maintains immune homeostasis. The present study explored the role of VISTA in human and murine inflammatory tissues of apical periodontitis (AP). VISTA was upregulated in inflammatory tissues of human AP. In mice, the expression of VISTA gradually increased with the development of mouse experimental apical periodontitis (MAP), the CD3+ T cells, CD11b+ myeloid cells, and FOXP3+ regulatory T cells also gradually accumulated. Moreover, a blockade of VISTA using a mouse in vivo anti-VISTA antibody aggravated periapical bone loss and enhanced the infiltration of immune cells in an experimental mouse periapical periodontitis model. The collective results suggest that VISTA serves as a negative regulator of the development and bone loss of apical periodontitis.

2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2000 ◽  
Vol 68 (12) ◽  
pp. 6650-6655 ◽  
Author(s):  
Arthur O. Tzianabos ◽  
Anil Chandraker ◽  
Wiltrud Kalka-Moll ◽  
Francesca Stingele ◽  
Victor M. Dong ◽  
...  

ABSTRACT Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of naı̈ve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus,Bacteroides fragilis, and a combination ofEnterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28–B7-2 pathway.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1900-1900
Author(s):  
Emanuela I Sega ◽  
Dennis B Leveson-Gower ◽  
Mareike Florek ◽  
Robert S Negrin

Abstract Abstract 1900 GVHD is a major complication of bone marrow transplantation (BMT) and results from donor T cells becoming activated and reacting to host antigens. Recently, lymphocyte activation gene-3 (LAG-3) has emerged as an important molecule, negatively regulating T cell activation and has been proposed to play an important role in CD4+CD25+Foxp3+ regulatory T cell (Treg) function. We investigated the functional in vivo role of LAG-3 in Treg and conventional T cells in murine GVHD with the hypothesis that LAG-3 engagement diminishes alloreactive T cell responses after BMT. Using murine models of acute GVHD in which allogeneic bone marrow cells are transplanted into lethally irradiated hosts, we and others have shown previously that donor Treg are able to suppress GVHD induced by donor allogeneic conventional T cells (Tcon). The role of LAG-3 in Treg function was evaluated both in vitro and in vivo by directly comparing Treg isolated from LAG-3−/− donor mice to Treg isolated from wild type donors (WT Treg). In vitro, in a mixed lymphocyte reaction assay, LAG-3−/− Treg efficiently suppressed the proliferation of alloreactive T cells in a manner similar to WT Treg. In vivo, a bioluminescent imaging assay (BLI) was utilized that allows for quantitative assessment of Tcon proliferation in addition to traditional metrics of GVHD severity including weight loss, survival and GVHD score. Both LAG-3−/− Treg and WT Treg were equally potent at suppressing Tcon proliferation as illustrated by BLI of luc+ T cells and demonstrated a significant increase in median survival time (MST) as compared to mice receiving Tcon only (35 days for Tcon vs. 58 and 68 days for WT and LAG-3−/− Treg, respectively, P=0.03), but there was no significant difference in MST between the groups receiving WT and LAG-3−/− Treg. Interestingly, when LAG-3−/− Tcon were used to induce GVHD in the absence of Treg, GVHD lethality was accelerated. Thus, all mice receiving LAG-3−/− Tcon showed decreased survival and significantly lower body weights than mice receiving WT Tcon (P=0.017). GVHD scores of LAG-3−/− Tcon recipients were also significantly higher than WT Tcon recipients at Day 20 post BMT (6.0 vs. 2.2, P=<0.0001). The addition of WT Treg induced only a modest yet statistically significant increase in median survival in mice receiving both LAG-3−/− Tcon and WT Treg as compared to mice receiving LAG-3−/− Tcon alone (45 days vs. 14.5 days, P=0.0075). In contrast, WT Treg more efficiently suppressed the proliferation of WT Tcon, increasing the MST to 70 days versus a MST of 26 days for mice receiving WT Tcon (P=0.0002). Re-isolation experiments using CFSE-labeled Tcon did not show differences in proliferation between WT and LAG-3−/− Tcon at five days following BMT. Since LAG-3 is upregulated as early as 2 days after T cell activation and gradually decreases over the next few days, is it possible that a difference in proliferation could be detected at an earlier timepoint thus explaining the difference in potency between the WT and LAG-3−/− Tcon. Together our results indicate, contrary to previous published results, that the absence of the LAG-3 molecule on Treg does not impair Treg function in our mouse model of acute GVHD. However, the absence of LAG-3 on Tcon induces a more severe GVHD suggesting that LAG-3 engagement on donor T cells diminishes alloreactive T cell response after BMT. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (4) ◽  
pp. 1367-1378 ◽  
Author(s):  
Wen-Hsien Liu ◽  
Ming-Zong Lai

ABSTRACT Deltex is known as a Notch signal mediator, but its physiological action mechanism is poorly understood. Here we identified a new regulatory role of Deltex in T-cell activation. Deltex expression was constitutive in resting T cells and was reduced upon T-cell receptor (TCR)-stimulated activation. The biological role of Deltex is supported by the enhanced T-cell activation when Deltex1 was down-regulated by small interfering RNA. Overexpression of Deltex1 suppressed T-cell activation but not the proximal TCR activation events. The impaired activation of mitogen-activated protein kinase by Deltex could be partly attributed to a selective down-regulation of MEKK1 protein in T cells. We further found that Deltex promoted degradation of the C-terminal catalytic fragment of MEKK1 [MEKK1(C)]. Deltex1 interacted directly with MEKK1(C) and stimulated the ubiquitination of MEKK1(C) as shown by in vivo and in vitro ubiquitination analysis. Therefore, MEKK1(C), the dominant form of MEKK1 in T cells, is a target of Deltex E3 ubiquitin ligase. Our results reveal a novel mechanism as to how Deltex selectively suppresses T-cell activation through degradation of a key signaling molecule, MEKK1.


2021 ◽  
Author(s):  
P Sanjai Kumar ◽  
Tathagata Mukherjee ◽  
Somlata Khamaru ◽  
Dalai Jupiter Nanda Kishore ◽  
Saurabh Chawla ◽  
...  

An intracellular rise in calcium (Ca2+) is an essential requisite underlying T cell activation and its associated pro-inflammatory cytokine production. Transient receptor potential vanilloid channel (TRPV1) is a thermo-sensitive, polymodal gated and permeable to cations such as Ca2+. It has been reported that TRPV1 expression increases during T cell activation. However, the possible involvement of TRPV1 during immunosuppression of T cells has not been studied yet. Here, we investigated the possible role of TRPV1 in FK506 or B16F10-culture supernatant (B16F10-CS) driven experimental immunosuppression in T cells. Intriguingly, it was found that TRPV1 expression is further elevated during immunosuppression compared to ConA or TCR activated T cells. Similarly, in B16F10 tumor-bearing mice, the TRPV1 expression was upregulated in T cells as compared to control mice, in vivo. Moreover, we observed an immediate rise in intracellular Ca2+ levels in FK506 and B16F10-CS treated T cells as compared to ConA or TCR treated T cells. Likewise, in B16F10 tumor-bearing mice, the basal intracellular calcium level was upregulated in T cells as compared to control mice, in vivo. To further investigate the possible mechanism of such rise in intracellular Ca2+ levels, TRPV1 specific functional inhibitor, 5՛-iodoresiniferatoxin (5՛-IRTX) was used in calcium influx studies. It was observed that the total intracellular Ca2+ levels decreased significantly in presence of 5՛-IRTX for either the FK506 or B16F10-CS as well as with ConA or TCR stimulated T cells, indicating the functional role of TRPV1 channels in FK506 or B16F10-CS mediated increase in intracellular Ca2+ levels. The current findings highlight an essential role of the TRPV1 channel in upregulating intracellular calcium levels during both immune-activation and immunosuppression. This study might also have broad implications in the context of other immune-suppressive diseases as well.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Stephanie Wallner ◽  
Thomas Gruber ◽  
Gottfried Baier ◽  
Dominik Wolf

The E3 ubiquitin ligase Cbl-b is an established nonredundant negative regulator of T-cell activation. Cbl-b fine-tunes the activation threshold of T cells and uncouples T cells from their vital need of a costimulatory signal to mount a productive immune response. Accordingly, mice deficient incblbare prone to autoimmunity and reject tumors. The latter has been described to be mediatedviaCD8+T cells, which are hyperactive and more abundant in shrinking tumors ofcblb-deficient animals. This might at least also in part be mediated by resistance ofcblb-deficient T cells to negative cues exerted by tumor-associated immuno-suppressive factors, such as TGF-βand regulatory T cells (Treg). Experiments usingcblb-deficient T cells either alone or in combination with vaccines validate the therapeutic concept of enhancing the efficacy of adoptively transferred lymphocytes to treat malignant tumors. This paper summarizes the current knowledge about the negative regulatory role of Cbl-b in T-cell activation and its potential therapeutic implications for cancer immunotherapy.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 504 ◽  
Author(s):  
Réka Kugyelka ◽  
Lilla Prenek ◽  
Katalin Olasz ◽  
Zoltán Kohl ◽  
Bálint Botz ◽  
...  

T cells play an essential role in the pathogenesis of both human rheumatoid arthritis (RA) and its murine models. A key molecule in T cell activation is ZAP-70, therefore we aimed to investigate the effects of partial ZAP-70 deficiency on the pathogenesis of recombinant human G1(rhG1)-induced arthritis (GIA), a well-established mouse model of RA. Arthritis was induced in BALB/c and ZAP-70+/− heterozygous mice. Disease progression was monitored using a scoring system and in vivo imaging, antigen-specific proliferation, cytokine and autoantibody production was measured and T cell apoptotic pathways were analyzed. ZAP-70+/− mice developed a less severe arthritis, as shown by both clinical picture and in vitro parameters (decreased T cell proliferation, cytokine and autoantibody production). The amount of cleaved Caspase-3 increased in arthritic ZAP-70+/− T cells, with no significant changes in cleaved Caspase-8 and -9 levels; although expression of Bim, Bcl-2 and Cytochrome C showed alterations. Tyrosine phosphorylation was less pronounced in arthritic ZAP-70+/− T cells and the amount of Cbl-b—a negative regulator of T cell activation—decreased as well. We hypothesize that the less severe disease seen in the partial absence of ZAP-70 might be caused by the decreased T cell activation accompanied by increased apoptosis.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 682 ◽  
Author(s):  
Nicla Porciello ◽  
Martina Kunkl ◽  
Loretta Tuosto

Regulation of immune responses is critical for ensuring pathogen clearance and for preventing reaction against self-antigens. Failure or breakdown of immunological tolerance results in autoimmunity. CD28 is an important co-stimulatory receptor expressed on T cells that, upon specific ligand binding, delivers signals essential for full T-cell activation and for the development and homeostasis of suppressive regulatory T cells. Many in vivo mouse models have been used for understanding the role of CD28 in the maintenance of immune homeostasis, thus leading to the development of CD28 signaling modulators that have been approved for the treatment of some autoimmune diseases. Despite all of this progress, a deeper understanding of the differences between the mouse and human receptor is required to allow a safe translation of pre-clinical studies in efficient therapies. In this review, we discuss the role of CD28 in tolerance and autoimmunity and the clinical efficacy of drugs that block or enhance CD28 signaling, by highlighting the success and failure of pre-clinical studies, when translated to humans.


1980 ◽  
Vol 152 (4) ◽  
pp. 996-1010 ◽  
Author(s):  
J Sprent

To examine the role of Ia antigens in controlling T cell activation in vivo, unprimed (CBA X B6)F1 (H-2k X H-2b) T cells were positively selected to sheep erythrocytes (SRC) for 5 d in irradiated F1 mice in the presence of large doses of anti-Iak antibody. With selection in the presence of broad-spectrum anti-Iak antibody (A.TH anti-A.TL antiserum), the activated T cells were markedly reduced in their capacity to collaborate with either B10.BR (I-Ak I-Bk I-Jk I-Ek I-Ck) (kkkkk) or B10.A(4R) (kbbbb) B cells but gave good helper responses with B10 (bbbbb) and (B10 X B10.BR)F1 B cells. Because there was no evidence for suppression, these findings were taken to imply that the anti-Iak antibody bound to Ia determinants on radioresistant macrophagelike cells of F1 host origin and blocked the activation of the IGk-restricted subgroup of F1 T cells but did not affect activation of the Iab-restricted T cell subgroup. Analogous experiments in which F1 T cells were selected to SRC in F1 mice in the presence of monoclonal anti-I-Ak antibody gave different results. In this situation, the reduction in T cell help for Iak-bearing B cells applied to B10.A(4R) B cells but not to B10.BR B cells. With selection of F1 T cells in B10.A(4R) mice, by contrast, anti-I-Ak antibody blocked T cell help for both B10.A(4R) and B10.BR B cells. These data suggested that genes telomeric to the I-A subregion were involved in controlling T cell activation and T-B collaboration. Because no evidence could be found that I-B through I-C determinants per se could act as restrictions elements, the working hypothesis for the data is that Iak-restricted T cells consist of two subgroups of cells: one subgroup is restricted by I-A-encoded molecules, whereas the other is restricted by I-A/E hybrid molecules encoded by two separated genes situated in the I-A and I-E subregions, respectively. The notion that A/E hybrid molecules serve as restriction elements is in line with the findings of other workers that these molecules can act as alloantigens and control responses to certain antigens under double Ir gene control.


2002 ◽  
Vol 76 (8) ◽  
pp. 3943-3951 ◽  
Author(s):  
M. Suresh ◽  
Gibson Lanier ◽  
Mary Katherine Large ◽  
Jason K. Whitmire ◽  
John D. Altman ◽  
...  

ABSTRACT The importance of lymphotoxin α (LTα) in lymphoid organogenesis is well established. Although LTα has been implicated in the pathogenesis of T-cell-mediated immunopathologies, the requirement for LTα in T-cell activation and effector function in vivo is not well understood. To determine the role of LTα in T-cell activation in vivo, we compared the generation of antigen-specific T-cell responses between wild type (+/+) and LTα-deficient (LTα−/−) mice during an acute infection with lymphocytic choriomeningitis virus (LCMV). Our studies showed that LCMV-infected LTα−/− mice had a profound impairment in the activation and expansion of virus-specific CD8 T cells in the spleen, as determined by cytotoxicity assays, intracellular staining for gamma interferon, and staining with major histocompatibility complex class I tetramers. Further, the nonlymphoid organs of LTα−/− mice also contained substantially lower number of LCMV-specific CD8 T cells than those of +/+ mice. Greatly reduced virus-specific CD8 T-cell responses in LTα−/− mice led to a defect in LCMV clearance from the tissues. In comparison to that in +/+ mice, the activation of LCMV-specific CD4 T cells was also significantly attenuated in LTα−/− mice. Adoptive transfer experiments were conducted to determine if abnormal lymphoid architecture in LTα−/− mice caused the impairment in the activation of LCMV-specific T-cell responses. Upon adoptive transfer into +/+ mice, the activation and expansion of LCMV-specific LTα−/− T cells were restored to levels comparable to those of +/+ T cells. In a reciprocal cell transfer experiment, activation of +/+ T cells was significantly reduced upon transfer into LTα−/− mice. These results showed that impairment in the activation of LCMV-specific T cells in LTα−/− mice may be due to abnormal lymphoid architecture and not to an intrinsic defect in LTα−/− T cells.


Sign in / Sign up

Export Citation Format

Share Document