scholarly journals The Significance of RHD Genotyping and Characteristic Analysis in Chinese RhD Variant Individuals

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanling Ying ◽  
Jingjing Zhang ◽  
Xiaozhen Hong ◽  
Xianguo Xu ◽  
Ji He ◽  
...  

BackgroundRhD is the most important and complex blood group system because of its highly polymorphic and immunogenic nature. RhD variants can induce immune response by allogeneic transfusion, organ transplantation, and fetal immunity. The transfusion strategies are different for RhD variants formed by various alleles. Therefore, extensive investigation of the molecular mechanism underlying RhD variants is critical for preventing immune-related blood transfusion reactions and fetal immunity.MethodsRhD variants were collected from donors and patients in Zhejiang Province, China. The phenotypes were classified using the serologic method. The full coding regions of RHD gene were analyzed using the PCR-SBT method. The multiplex ligation-dependent probe amplification (MLPA) assay was used to analyze the genotype and gene copy number. SWISS-MODLE and PyMOL software were used to analyze 3D structures of RhD caused by the variant alleles. The effect of non-synonymous substitutions was predicted using Polymorphism Phenotyping algorithm (PolyPhen-2), Sorting Intolerant From Tolerant (SIFT), and Protein Variation Effect Analyzer (PROVEAN) software.ResultsIn the collected RhD variants, 28 distinct RHD variant alleles were identified, including three novel variant alleles. RH-MLPA assay is advantageous for determining the copy number of RHD gene. 3D homology modeling predicted that protein conformation was disrupted and may explain RhD epitope differential expression. A total of 14 non-synonymous mutations were determined to be detrimental to the protein structure.DiscussionWe revealed the diversity of RHD alleles present in eastern Chinese RhD variants. The bioinformatics of these variant alleles extended our knowledge of RhD variants, which was crucial for evaluating their impact to guide transfusion support and avoid immune-related blood transfusion reactions.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Fang Huang ◽  
Biraj Shrestha ◽  
Hui Liu ◽  
Lin-Hua Tang ◽  
Shui-Sen Zhou ◽  
...  

Abstract Background The emergence and spread of artemisinin resistance in Plasmodium falciparum poses a threat to malaria eradication, including China’s plan to eliminate malaria by 2020. Piperaquine (PPQ) resistance has emerged in Cambodia, compromising an important partner drug that is widely used in China in the form of dihydroartemisinin (DHA)-PPQ. Several mutations in a P. falciparum gene encoding a kelch protein on chromosome 13 (k13) are associated with artemisinin resistance and have arisen spread in the Great Mekong subregion, including the China–Myanmar border. Multiple copies of the plasmepsin II/III (pm2/3) genes, located on chromosome 14, have been shown to be associated with PPQ resistance. Methods The therapeutic efficacy of DHA-PPQ for the treatment of uncomplicated P. falciparum was evaluated along the China–Myanmar border from 2010 to 2014. The dry blood spots samples collected in the efficacy study prior DHA-PPQ treatment and from the local hospital by passive detection were used to amplify k13 and pm2. Polymorphisms within k13 were genotyped by capillary sequencing and pm2 copy number was quantified by relative-quantitative real-time polymerase chain reaction. Treatment outcome was evaluated with the World Health Organization protocol. A linear regression model was used to estimate the association between the day 3 positive rate and k13 mutation and the relationship of the pm2 copy number variants and k13 mutations. Results DHA-PPQ was effective for uncomplicated P. falciparum infection in Yunnan Province with cure rates > 95%. Twelve non synonymous mutations in the k13 domain were observed among the 268 samples with the prevalence of 44.0% and the predominant mutation was F446I with a prevalence of 32.8%. Only one sample was observed with multi-copies of pm2, including parasites with and without k13 mutations. The therapeutic efficacy of DHA-PPQ was > 95% along the China–Myanmar border, consistent with the lack of amplification of pm2. Conclusion DHA-PPQ for uncomplicated P. falciparum infection still showed efficacy in an area with artemisinin-resistant malaria along the China–Myanmar border. There was no evidence to show PPQ resistance by clinical study and molecular markers survey. Continued monitoring of the parasite population using molecular markers will be important to track emergence and spread of resistance in this region.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 283
Author(s):  
Eyal Seroussi

Determination of the relative copy numbers of mixed molecular species in nucleic acid samples is often the objective of biological experiments, including Single-Nucleotide Polymorphism (SNP), indel and gene copy-number characterization, and quantification of CRISPR-Cas9 base editing, cytosine methylation, and RNA editing. Standard dye-terminator chromatograms are a widely accessible, cost-effective information source from which copy-number proportions can be inferred. However, the rate of incorporation of dye terminators is dependent on the dye type, the adjacent sequence string, and the secondary structure of the sequenced strand. These variable rates complicate inferences and have driven scientists to resort to complex and costly quantification methods. Because these complex methods introduce their own biases, researchers are rethinking whether rectifying distortions in sequencing trace files and using direct sequencing for quantification will enable comparable accurate assessment. Indeed, recent developments in software tools (e.g., TIDE, ICE, EditR, BEEP and BEAT) indicate that quantification based on direct Sanger sequencing is gaining in scientific acceptance. This commentary reviews the common obstacles in quantification and the latest insights and developments relevant to estimating copy-number proportions based on direct Sanger sequencing, concluding that bidirectional sequencing and sophisticated base calling are the keys to identifying and avoiding sequence distortions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raimonda Kubiliute ◽  
Indre Januskeviciene ◽  
Ruta Urbanaviciute ◽  
Kristina Daniunaite ◽  
Monika Drobniene ◽  
...  

AbstractHyperactivation of ABC transporter ABCB1 and induction of epithelial–mesenchymal transition (EMT) are the most common mechanism of acquired cancer chemoresistance. This study describes possible mechanisms, that might contribute to upregulation of ABCB1 and synergistically boost the acquisition of doxorubicin (DOX) resistance in breast cancer MX-1 cell line. DOX resistance in MX-1 cell line was induced by a stepwise increase of drug concentration or by pretreatment of cells with an ABCB1 transporter activator tetraphenylphosphonium (TPP+) followed by DOX exposure. Transcriptome analysis of derived cells was performed by human gene expression microarrays and by quantitative PCR. Genetic and epigenetic mechanisms of ABCB1 regulation were evaluated by pyrosequencing and gene copy number variation analysis. Gradual activation of canonical EMT transcription factors with later activation of ABCB1 at the transcript level was observed in DOX-only treated cells, while TPP+ exposure induced considerable activation of ABCB1 at both, mRNA and protein level. The changes in ABCB1 mRNA and protein level were related to the promoter DNA hypomethylation and the increase in gene copy number. ABCB1-active cells were highly resistant to DOX and showed morphological and molecular features of EMT. The study suggests that nongenotoxic ABCB1 inducer can possibly accelerate development of DOX resistance.


Toxicon ◽  
2021 ◽  
Author(s):  
Armando Mendoza-Flores ◽  
Ignacio Leyva-Valencia ◽  
Francisco E. Hernández-Sandoval ◽  
Clara E. Galindo-Sánchez ◽  
Christine J. Band-Schmidt ◽  
...  

2011 ◽  
Vol 22 (1) ◽  
pp. 64-75 ◽  
Author(s):  
N. Sher ◽  
G. W. Bell ◽  
S. Li ◽  
J. Nordman ◽  
T. Eng ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162544 ◽  
Author(s):  
Marcela Rosato ◽  
Aleš Kovařík ◽  
Ricardo Garilleti ◽  
Josep A. Rosselló

Sign in / Sign up

Export Citation Format

Share Document