scholarly journals Intrapleural Injection of Anti-PD1 Antibody: A Novel Management of Malignant Pleural Effusion

2021 ◽  
Vol 12 ◽  
Author(s):  
Xinying Li ◽  
Guannan Wu ◽  
Cen Chen ◽  
Yuan Zhao ◽  
Suhua Zhu ◽  
...  

BackgroundMalignant tumors accompanied with malignant pleural effusion (MPE) often indicate poor prognosis. The therapeutic effect and mechanism of intrapleural injection of anti-programmed cell death protein 1 (PD1) on MPE need to be explored.MethodsA preclinical MPE mouse model and a small clinical study were used to evaluate the effect of intrapleural injection of anti-PD1 antibody. The role of immune cells was observed via flow cytometry, RNA-sequencing, quantitative PCR, western blot, immunohistochemistry, and other experimental methods.ResultsIntrathoracic injection of anti-PD1 monoclonal antibody (mAb) has significantly prolonged the survival time of mice (P = 0.0098) and reduced the amount of effusion (P = 0.003) and the number of cancer nodules (P = 0.0043). Local CD8+ T cells participated in intrapleural administration of anti-PD1 mAb. The proportion of CD69+, IFN-γ+, and granzyme B+ CD8+ T cells in the pleural cavity was increased, and the expression of TNF-α and IL-1β in MPE also developed significantly after injection. Local injection promoted activation of the CCL20/CCR6 pathway in the tumor microenvironment and further elevated the expression of several molecules related to lymphocyte activation. Clinically, the control rate of intrathoracic injection of sintilimab (a human anti-PD1 mAb) for 10 weeks in NSCLC patients with MPE was 66.7%. Local injection improved the activity and function of patients’ local cytotoxic T cells (CTLs).ConclusionsIntrapleural injection of anti-PD1 mAb could control malignant pleural effusion and the growth of cancer, which may be achieved by enhancing local CTL activity and cytotoxicity.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 564-564
Author(s):  
John C. Riches ◽  
Jeff K. Davies ◽  
Fabienne McClanahan ◽  
Rewas Fatah ◽  
Sameena Iqbal ◽  
...  

Abstract Abstract 564 The ability to evade immune destruction is increasingly being recognised as a crucial feature of cancer cells. Chronic lymphocytic leukemia (CLL) is associated with profound defects in T-cell function, resulting in failure of anti-tumor immunity and increased susceptibility to infections. T cells from CLL patients exhibit functional defects and alterations in gene expression, that show similarities to exhausted T cells in chronic viral infections. However, it is unclear whether CLL T cells are truly exhausted, or whether these defects are restricted to expanded populations of CMV specific T cells. We investigated the phenotype and function of CD8+ T cells from CLL patients and controls matched for age and CMV-serostatus. We demonstrate an increased proportion of CCR7- effector T cells in both CLL patients and CMV-seropositive individuals (p<0.05). CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD160 and CD244 irrespective of CMV-serostatus (p<0.01), whereas increased PD1 expression on CD8+ T cells was limited to CMV-seronegative patients (p=0.002). CLL CD8+ T cells also showed functional defects in proliferation and cytotoxicity irrespective of CMV-serostatus, with the cytolytic defect caused by a combination of impaired granzyme B packaging into secretory vesicles and non-polarized degranulation. In contrast to virally-induced exhaustion, CLL T cells showed increased production of interferon-γ with increased T-BET expression (p<0.01), normal IL-2 production, and no downregulation of IL-7R. Therefore, while CLL CD8+ T cells exhibit some features of T-cell exhaustion, they show important differences (Table 1). These findings also exclude CMV as the sole cause of T cell defects in CLL. Lenalidomide has recently been demonstrated to have significant clinical activity in CLL. Its mechanism of action in this disease is not well understood, but it thought to act primarily by a combination of CLL cell and immune cell activation. We therefore examined the ability of lenalidomide to repair the observed T cell defects by investigating the impact of this agent on the gene expression profiles and function of CLL T cells. Treatment of CLL CD8+ T cells with lenalidomide increased the expression of 137 genes, while 34 genes were downregulated. The most prominent changes in expression were of genes involved in cytoskeletal signaling including WASF1 (Wiskott-Aldrich syndrome protein, family member 1), and TPM2 (tropomyosin 2). There was also upregulation of genes involved in lymphocyte activation, including TNFSF4 (Tumor necrosis factor ligand superfamily, member 4: OX40L), LAG3 (Lymphocyte-activation gene 3), and TNF, and genes involved in cell proliferation such as IKZF1 (Ikaros) and GRN (Granulin). Although lenalidomide treatment or anti-CD3 stimulation alone had no impact on T-bet expression, co-treatment with both anti-CD3 stimulation and lenalidomide resulted in significantly enhanced T-bet expression and increased production of interferon-γ. In contrast, lenalidomide treatment alone was able to improve T cell cytotoxic function, associated with repair of trafficking of granzyme B into the immunological synapse. In conclusion, T cells from CLL patients exhibit features of T-cell pseudo-exhaustion that are present irrespective of CMV serostatus. Treatment of CLL T cells with lenalidomide results in upregulation of genes involved in proliferation, activation, and cytoskeletal pathways, resulting in repair of the functional T cell defects. Table 1. Comparison of the phenotypic and functional defects of T cells from CLL patients with T-cell “exhaustion” in chronic viral infections Exhausted T cells in chronic viral infections T cells from CLL patients Increased expression of inhibitory receptors Yes Yes Abnormal transcription factor profile Yes Yes Reduced proliferative potential Yes Yes Decreased expression of IL-7R (CD127) Yes No Decreased cytokine production ↓IL-2, ↓IFN-γ Yes No Impaired cytotoxicity Yes Yes Disclosures: Riches: Celgene: Research Funding. Gribben:Celgene: Honoraria; Roche: Honoraria; Pharmacyclics: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria.


2020 ◽  
Vol 21 (17) ◽  
pp. 6178
Author(s):  
Rajeev Dhupar ◽  
Olugbenga T. Okusanya ◽  
Seth H. Eisenberg ◽  
Sara E. Monaco ◽  
Ayana T. Ruffin ◽  
...  

While T cell-based cancer immunotherapies have shown great promise, there remains a need to understand how individual metastatic tumor environments impart local T cell dysfunction. At advanced stages, cancers that metastasize to the pleural space can result in a malignant pleural effusion (MPE) that harbors abundant tumor and immune cells, often exceeding 108 leukocytes per liter. Unlike other metastatic sites, MPEs are readily and repeatedly accessible via indwelling catheters, providing an opportunity to study the interface between tumor dynamics and immunity. In the current study, we examined CD8+ T cells within MPEs collected from patients with heterogeneous primary tumors and at various stages in treatment to determine (1) if these cells possess anti-tumor activity following removal from the MPE, (2) factors in the MPE that may contribute to their dysfunction, and (3) the phenotypic changes in T cell populations that occur following ex vivo expansion. Co-cultures of CD8+ T cells with autologous CD45― tumor containing cells demonstrated cytotoxicity (p = 0.030) and IFNγ production (p = 0.003) that inversely correlated with percent of myeloid derived suppressor cells, lactate, and lactate dehydrogenase (LDH) within the MPE. Ex vivo expansion of CD8+ T cells resulted in progressive differentiation marked by distinct populations expressing decreased CD45RA, CCR7, CD127, and increased inhibitory receptors. These findings suggest that MPEs may be a source of tumor-reactive T cells and that the cellular and acellular components suppress optimal function.


2001 ◽  
Vol 13 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Christopher W McMahon ◽  
David H Raulet

2014 ◽  
pp. 181-192
Author(s):  
Udo F. Hartwig ◽  
Maya C. André ◽  
Christian Münz

Sign in / Sign up

Export Citation Format

Share Document