scholarly journals Applications and Immunological Effects of Quantum Dots on Respiratory System

2022 ◽  
Vol 12 ◽  
Author(s):  
Laibin Ren ◽  
Lingwei Wang ◽  
Markus Rehberg ◽  
Tobias Stoeger ◽  
Jianglin Zhang ◽  
...  

Quantum dots (QDs), are one kind of nanoscale semiconductor crystals with specific electronic and optical properties, offering near-infrared mission and chemically active surfaces. Increasing interest for QDs exists in developing theranostics platforms for bioapplications such as imaging, drug delivery and therapy. Here we summarized QDs’ biomedical applications, toxicity, and immunological effects on the respiratory system. Bioapplications of QDs in lung include biomedical imaging, drug delivery, bio-sensing or diagnosis and therapy. Generically, toxic effects of nanoparticles are related to the generation of oxidative stresses with subsequent DNA damage and decreased lung cells viability in vitro and in vivo because of release of toxic metal ions or the features of QDs like its surface charge. Lastly, pulmonary immunological effects of QDs mainly include proinflammatory cytokines release and recruiting innate leukocytes or adaptive T cells.

Theranostics ◽  
2012 ◽  
Vol 2 (7) ◽  
pp. 723-733 ◽  
Author(s):  
Rui Hu ◽  
Wing-Cheung Law ◽  
Guimiao Lin ◽  
Ling Ye ◽  
Jianwei Liu ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12202
Author(s):  
Mariya Borovaya ◽  
Inna Horiunova ◽  
Svitlana Plokhovska ◽  
Nadia Pushkarova ◽  
Yaroslav Blume ◽  
...  

Ag-based quantum dots (QDs) are semiconductor nanomaterials with exclusive electrooptical properties ideally adaptable for various biotechnological, chemical, and medical applications. Silver-based semiconductor nanocrystals have developed rapidly over the past decades. They have become a promising luminescent functional material for in vivo and in vitro fluorescent studies due to their ability to emit at the near-infrared (NIR) wavelength. In this review, we discuss the basic features of Ag-based QDs, the current status of classic (chemical) and novel methods (“green” synthesis) used to produce these QDs. Additionally, the advantages of using such organisms as bacteria, actinomycetes, fungi, algae, and plants for silver-based QDs biosynthesis have been discussed. The application of silver-based QDs as fluorophores for bioimaging application due to their fluorescence intensity, high quantum yield, fluorescent stability, and resistance to photobleaching has also been reviewed.


2020 ◽  
Vol MA2020-01 (6) ◽  
pp. 648-648
Author(s):  
Anton V Naumov ◽  
Md Tanvir Hasan ◽  
Elizabeth Campbell ◽  
Ching-Wei Lin ◽  
Angela M. Belcher

2011 ◽  
Vol 123 (25) ◽  
pp. 5813-5816 ◽  
Author(s):  
Yao He ◽  
Yiling Zhong ◽  
Yuanyuan Su ◽  
Yimei Lu ◽  
Ziyun Jiang ◽  
...  

2011 ◽  
Vol 50 (25) ◽  
pp. 5695-5698 ◽  
Author(s):  
Yao He ◽  
Yiling Zhong ◽  
Yuanyuan Su ◽  
Yimei Lu ◽  
Ziyun Jiang ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 242 ◽  
Author(s):  
Miaomiao Luo ◽  
Wei Cheng ◽  
Xiaowei Zeng ◽  
Lin Mei ◽  
Gan Liu ◽  
...  

Due to the inherent limitations, single chemo or photothermal therapies (PTT) are always inefficient. The combination of chemotherapy and PTT for the treatment of cancers has attracted a great interest during the past few years. As a photothermal agent, black phosphorus quantum dots (BPQDs) possess an excellent extinction coefficient, high photothermal conversion efficacy, and good biocompatibility. Herein, we developed a photo- and pH-sensitive nanoparticle based on BPQDs for targeted chemo-photothermal therapy. Doxorubicin (DOX) was employed as a model drug. This nanosystem displayed outstanding photothermal performance both in vitro and in vivo. Folic acid conjugation onto the surface endowed this system an excellent tumor-targeting effect, which was demonstrated by the cellular targeting assay. The BPQDs-based drug delivery system exhibited pH- and photo-responsive release properties, which could reduce the potential damage to normal cells. The in vitro cell viability study showed a synergistic effect in suppressing cancer cell proliferation. Therefore, this BPQDs-based drug delivery system has substantial potential for future clinical applications.


2021 ◽  
Author(s):  
Yuanyuan Zhong ◽  
Li Zhang ◽  
Shian Sun ◽  
Zhenghao Zhou ◽  
Yunsu Ma ◽  
...  

Abstract With hollow mesoporous silica (hMSN) and injectable macroporous hydrogel (Gel) used as the internal and external drug-loading material respectively, a sequential drug delivery system DOX-CA4P@Gel was constructed, in which combretastatin A4 phosphate (CA4P) and doxorubicin (DOX) were both loaded. The anti-angiogenic drug, CA4P was initially released due to the degradation of Gel, followed by the anti-cell proliferative drug, DOX, released from hMSN in tumor microenvironment. Results showed that CA4P was mainly released at the early stage. At 48 h, CA4P release reached 71.08%, while DOX was only 14.39%. At 144 h, CA4P was 78.20%, while DOX release significantly increased to 61.60%, showing an obvious sequential release behavior. Photodynamic properties of porphyrin endow hydrogel (φΔ(Gel)=0.91) with enhanced tumor therapy effect. In vitro and in vivo experiments showed that dual drugs treated groups have better tumor inhibition than solo drug under near infrared laser irradiation, indicating the effectivity of combined photodynamic-chemotherapy.


2D Materials ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 035013
Author(s):  
Md Tanvir Hasan ◽  
Bong Han Lee ◽  
Ching-Wei Lin ◽  
Ainsley McDonald-Boyer ◽  
Roberto Gonzalez-Rodriguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document