scholarly journals Submesoscale Mixing Across the Mixed Layer in the Gulf of Mexico

2021 ◽  
Vol 8 ◽  
Author(s):  
Guangpeng Liu ◽  
Annalisa Bracco ◽  
Alexandra Sitar

Submesoscale circulations influence momentum, buoyancy and transport of biological tracers and pollutants within the upper turbulent layer. How much and how far into the water column this influence extends remain open questions in most of the global ocean. This work evaluates the behavior of neutrally buoyant particles advected in simulations of the northern Gulf of Mexico by analyzing the trajectories of Lagrangian particles released multiple times at the ocean surface and below the mixed layer. The relative role of meso- and submesoscale dynamics is quantified by comparing results in submesoscale permitting and mesoscale resolving simulations. Submesoscale circulations are responsible for greater vertical transport across fixed depth ranges and also across the mixed layer, both into it and away from it, in all seasons. The significance of the submesoscale-induced transport, however, is far greater in winter. In this season, a kernel density estimation and a detailed vertical mixing analysis are performed. It is found that in the large mesoscale Loop Current eddy, upwelling into the mixed layer is the major contributor to the vertical fluxes, despite its clockwise circulation. This is opposite to the behavior simulated in the mesoscale resolving case. In the “submesoscale soup,” away from the large mesoscale structures such as the Loop Current and its detached eddies, upwelling into the mixed layer is distributed more uniformly than downwelling motions from the surface across the base of the mixed layer. Maps of vertical diffusivity indicate that there is an order of magnitude difference among simulations. In the submesoscale permitting case values are distributed around 10–3 m2 s–1 in the upper water column in winter, in agreement with recent indirect estimates off the Chilean coast. Diffusivities are greater in the eastern portion of the Gulf, where the submesoscale circulations are more intense due to sustained density gradients supplied by the warmer and saltier Loop Current.

Ocean Science ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 235-257 ◽  
Author(s):  
Reiner Onken

Abstract. The Regional Ocean Modeling System (ROMS) has been employed to explore the sensitivity of the forecast skill of mixed-layer properties to initial conditions, boundary conditions, and vertical mixing parameterisations. The initial and lateral boundary conditions were provided by the Mediterranean Forecasting System (MFS) or by the MERCATOR global ocean circulation model via one-way nesting; the initial conditions were additionally updated through the assimilation of observations. Nowcasts and forecasts from the weather forecast models COSMO-ME and COSMO-IT, partly melded with observations, served as surface boundary conditions. The vertical mixing was parameterised by the GLS (generic length scale) scheme Umlauf and Burchard (2003) in four different set-ups. All ROMS forecasts were validated against the observations which were taken during the REP14-MED survey to the west of Sardinia. Nesting ROMS in MERCATOR and updating the initial conditions through data assimilation provided the best agreement of the predicted mixed-layer properties with the time series from a moored thermistor chain. Further improvement was obtained by the usage of COSMO-ME atmospheric forcing, which was melded with real observations, and by the application of the k-ω vertical mixing scheme with increased vertical eddy diffusivity. The predicted temporal variability of the mixed-layer temperature was reasonably well correlated with the observed variability, while the modelled variability of the mixed-layer depth exhibited only agreement with the observations near the diurnal frequency peak. For the forecasted horizontal variability, reasonable agreement was found with observations from a ScanFish section, but only for the mesoscale wave number band; the observed sub-mesoscale variability was not reproduced by ROMS.


2014 ◽  
Vol 72 (6) ◽  
pp. 1952-1960 ◽  
Author(s):  
Walker O. Smith ◽  
Randolph M. Jones

Abstract Phytoplankton growth and biomass accumulation vary spatially and temporally in the Ross Sea, largely as a function of ice concentrations, vertical mixing depths, and iron concentrations. To assess the role of vertical mixing in bloom initiation, we used a high-resolution numerical model to estimate changes in mixed layer depths from October 1 through early December, the period where phytoplankton growth begins and biomass accumulates, and estimate critical depths for this period. Mixed layers in October ranged from the complete water column (>600 m) to ca. 200 m; over a 60-day period, the mixed layers decreased on average by 70%. Estimated critical depths were exceeded in October, but would allow growth to proceed in late October due to shoaling of mixed layer depths, consistent with the known onset of the spring bloom in the Ross Sea. We also analysed a series of stations sampled near the Ross Ice Shelf during January 2012. Mean vertical profiles for the stations indicated deep vertical mixing; mixed layer depths averaged 60 m and ranged up to 96 m. Chlorophyll concentrations within the mixed layer averaged 6.60 µg l−1, and the pigment contributions were dominated by Phaeocystis antarctica. We suggest that this mesoscale region near the ice shelf is elevated in phytoplankton biomass due to frequent mixing events that redistribute biomass to depth and replenish nutrients, which in turn are utilized by an assemblage capable of utilizing low mean irradiance levels. Thus, the deep mixed layers and high biomass concentrations represent growth over long periods under reduced mixing punctuated by short periods of deeper vertical mixing that redistribute biomass. Water column vertical mixing and phytoplankton biomass in the Ross Sea are consistent with the critical depth concept as originally proposed by Sverdrup.


2010 ◽  
Vol 7 (1) ◽  
pp. 361-389
Author(s):  
I. Fer ◽  
P. Nandi ◽  
W. S. Holbrook ◽  
R. W. Schmitt ◽  
P. Páramo

Abstract. Multichannel seismic data acquired in the Lesser Antilles in the western tropical North Atlantic indicate that the seismic reflection method has imaged an oceanic thermohaline staircase. Synthetic modeling of observed density and sound speed profiles corroborates inferences from the seismic imagery. Laterally coherent, uniform layers are present at depths ranging from 550–700 m and have a separation of ~20 m, with thicknesses increasing with depth. Reflection coefficient, a measure of the acoustic impedance contrasts, associated with the interfaces is one order of magnitude greater than the background levels. Hydrography sampled in previous surveys puts a constraint on the longevity of these layers in this area to within a maximum of three years. Spectral analysis of layer horizons in the thermohaline staircase indicates that internal wave activity is anomalously low, suggesting weak internal wave-induced turbulence and mixing. Results from two independent measurements, the application of a finescale parameterization to observed high-resolution velocity profiles and direct measurements of turbulent dissipation rate, confirm the low levels of turbulence and mixing. The lack of internal wave-induced mixing allows for the maintenance of the staircase. Our observations show the potential that seismic oceanography can contribute to an improved understanding of temporal occurrence rates, and the geographical distribution of thermohaline staircases and can improve current estimates of vertical mixing rates ascribable to salt fingering in the global ocean.


Author(s):  
Katherine Richardson ◽  
Jørgen Bendtsen

Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical–chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.


2021 ◽  
Author(s):  
Leonid Ivanov ◽  
Rafael Ramos ◽  
Drew Gustafson

Abstract Understanding the physics of generation, propagation, and dissipation of inertial currents is important from a variety of aspects. For the Gulf of Mexico, one such aspect is that these oscillations represent an uncertainty in the measurements and forecasting of the longer-period currents, such as those due to the Loop Current (LC) and meso-scale eddies. The Industry has a practice of applying an ‘uplift’ to estimates of current velocity to account for the effect of tidal and inertial currents in cases when observations or model estimates do not resolve the high-frequency current variability. The value of the ‘uplift’ is assumed to be proportional to the intensity of the low-frequency flow. Our analysis aims at testing whether this assumption is valid by providing a detailed description of the space-time variability, including seasonal changes, of inertial oscillations in the central northern Gulf of Mexico. From the analysis of long-term current profile observations and drifter data we found that, on average, near-inertial oscillations have higher amplitudes outside of the areas of strong low-frequency currents associated with a Loop Current Eddy (LCE). Within the upper 200m of the water column, periods characterized by the downward energy propagation dominate. In the layer below 200m, near-inertial waves propagate upward and downward, and the wave trains cannot be traced to a single source of energy. This suggests near-inertial waves within the main part of the water column are of ‘global’ rather than of ‘local’ origin. For most near-inertial wave generation events through wind forcing, the downward energy propagation could not be traced for any extended period of time and no deeper than approximately 200-m depth. The rate of downward energy propagation in the upper pycnocline is on the order of 10-12 m/day. For the near-inertial currents, the first two Empirical Orthogonal Functions (EOF) contribute only 40% into the total current variability for the period of LCE presence and 52% for the period of benign current conditions. The mode shapes vary within a wide range that, most likely, reflects a random distribution of mode shapes that depend on the lateral geometry of the forcing, mixed layer depth, and stratification.


2016 ◽  
Author(s):  
Reiner Onken

Abstract. The Regional Ocean Modeling System (ROMS) has been employed to explore the sensitivity of the forecast skill of mixed-layer properties to the initial conditions, boundary conditions, and vertical mixing parameterisations. The initial and lateral boundary conditions were provided by the Mediterranean Forecasting System (MFS) or by the MERCATOR global ocean circulation model via one-way nesting; the initial conditions were additionally updated by the assimilation of observations. Nowcasts and forecasts from the weather forecast models COSMO-ME and COSMO-IT, partly melded with observations, served as surface boundary conditions. The vertical mixing was parameterised by the GLS (Generic Length Scale) scheme (Umlauf et al. 2003) in four different setups. All ROMS forecasts were validated against observations which were taken during the REP14-MED oceanographic survey to the west of Sardinia. Nesting ROMS in MERCATOR and updating the initial conditions by data assimilation provided the best agreement of the predicted mixed-layer temperature and the mixed-layer depth with time series from a moored thermistor chain. Further improvement was obtained by the usage of COSMO-ME atmospheric forcing which was melded with real observations, and by the application of the k − ε vertical mixing scheme with increased vertical eddy diffusivity. The predicted temporal variability of the mixed-layer temperature was reasonably well correlated with the observed variability in the frequency range above one cycle per day, while the modelled variability of the mixed-layer depth exhibited only agreement with the observations near the diurnal frequency peak. For the forecasted horizontal variability, reasonable agreement was found with observations from a ScanFish section, but only for the mesoscale wavenumber band; the observed sub-mesoscale variability was not reproduced by ROMS.


Forecasting ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 934-953
Author(s):  
Ali Muhamed Ali ◽  
Hanqi Zhuang ◽  
James VanZwieten ◽  
Ali K. Ibrahim ◽  
Laurent Chérubin

Despite the large efforts made by the ocean modeling community, such as the GODAE (Global Ocean Data Assimilation Experiment), which started in 1997 and was renamed as OceanPredict in 2019, the prediction of ocean currents has remained a challenge until the present day—particularly in ocean regions that are characterized by rapid changes in their circulation due to changes in atmospheric forcing or due to the release of available potential energy through the development of instabilities. Ocean numerical models’ useful forecast window is no longer than two days over a given area with the best initialization possible. Predictions quickly diverge from the observational field throughout the water and become unreliable, despite the fact that they can simulate the observed dynamics through other variables such as temperature, salinity and sea surface height. Numerical methods such as harmonic analysis are used to predict both short- and long-term tidal currents with significant accuracy. However, they are limited to the areas where the tide was measured. In this study, a new approach to ocean current prediction based on deep learning is proposed. This method is evaluated on the measured energetic currents of the Gulf of Mexico circulation dominated by the Loop Current (LC) at multiple spatial and temporal scales. The approach taken herein consists of dividing the velocity tensor into planes perpendicular to each of the three Cartesian coordinate system directions. A Long Short-Term Memory Recurrent Neural Network, which is best suited to handling long-term dependencies in the data, was thus used to predict the evolution of the velocity field in each plane, along each of the three directions. The predicted tensors, made of the planes perpendicular to each Cartesian direction, revealed that the model’s prediction skills were best for the flow field in the planes perpendicular to the direction of prediction. Furthermore, the fusion of all three predicted tensors significantly increased the overall skills of the flow prediction over the individual model’s predictions. The useful forecast period of this new model was greater than 4 days with a root mean square error less than 0.05 cm·s−1 and a correlation coefficient of 0.6.


2014 ◽  
Vol 11 (8) ◽  
pp. 12673-12695 ◽  
Author(s):  
Z. Xue ◽  
R. He ◽  
K. Fennel ◽  
W.-J. Cai ◽  
S. Lohrenz ◽  
...  

Abstract. A three-dimensional coupled physical–biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004–2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr−1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~ 70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.


2007 ◽  
Vol 37 (12) ◽  
pp. 2895-2919 ◽  
Author(s):  
Stephen G. Yeager ◽  
William G. Large

Abstract Temperature and salinity (T–S) profiles from the global array of Argo floats support the existence of spice-formation regions in the subtropics of each ocean basin where large, destabilizing vertical salinity gradients coincide with weak stratification in winter. In these characteristic regions, convective boundary layer mixing generates a strongly density-compensated (SDC) layer at the base of the well-mixed layer. The degree of density compensation of the T–S gradients of an upper-ocean water column is quantified using a bulk vertical Turner angle (Tub) between the surface and upper pycnocline. The winter generation of the SDC layer in spice-formation zones is clearly seen in Argo data as a large-amplitude seasonal cycle of Tub in regions of the subtropical oceans characterized by high mean Tub. In formation regions, Argo floats provide ample evidence of large, abrupt spice injection (T–S increase on subducted isopycnals due to vertical mixing) associated with the winter increase in Tub. A simple conceptual model of the spice-injection mechanism is presented that is based on known behavior of convective boundary layers and supported by numerical model results. It suggests that penetrative convective mixing of a partially density-compensated water column will enhance the Turner angle within a transition layer between the mixed layer and the upper pycnocline, generating seasonal T–S increases on density surfaces below the mixed layer. Observations are consistent with this hypothesis. In OGCMs, regions showing high Tub mean and seasonal amplitude are also the sources of significant interannual spice variability in the permanent pycnocline. Decadal changes in the North Pacific of a model hindcast simulation show qualitative resemblance to the observed multiyear time series from the Hawaii Ocean Time series (HOT) station ALOHA. Modeled pycnocline variations near Hawaii can be linked to high Tub seasonality and winter spice injection within a formation region upstream of ALOHA, suggesting that spice injection may explain the origins of observed large, interannual variations on isopycnals in the ocean interior.


Ocean Science ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 621-631 ◽  
Author(s):  
I. Fer ◽  
P. Nandi ◽  
W. S. Holbrook ◽  
R. W. Schmitt ◽  
P. Páramo

Abstract. Multichannel seismic data acquired in the Lesser Antilles in the western tropical North Atlantic indicate that the seismic reflection method has imaged an oceanic thermohaline staircase. Synthetic acoustic modeling using measured density and sound speed profiles corroborates inferences from the seismic data. In a small portion of the seismic image, laterally coherent, uniform layers are present at depths ranging from 550–700 m and have a separation of ~20 m, with thicknesses increasing with depth. The reflection coefficient, a measure of the acoustic impedance contrasts across these reflective interfaces, is one order of magnitude greater than background noise. Hydrography sampled in previous surveys suggests that the layers are a permanent feature of the region. Spectral analysis of layer horizons in the thermohaline staircase indicates that internal wave activity is anomalously low, suggesting weak internal wave-induced turbulence. Results from two independent measurements, the application of a finescale parameterization to observed high-resolution velocity profiles and direct measurements of turbulent dissipation rate, confirm these low levels of turbulence. The lack of internal wave-induced turbulence may allow for the maintenance of the staircase or may be due to suppression by the double-diffusive convection within the staircase. Our observations show the potential for seismic oceanography to contribute to an improved understanding of occurrence rates and the geographical distribution of thermohaline staircases, and should thereby improve estimates of vertical mixing rates ascribable to salt fingering in the global ocean.


Sign in / Sign up

Export Citation Format

Share Document