scholarly journals Energetics of Eddy-Mean Flow Interactions in the Amery Ice Shelf Cavity

2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Wu ◽  
Zhaomin Wang ◽  
Chengyan Liu ◽  
Liangjun Yan

Previous studies demonstrated that eddy processes play an important role in ice shelf basal melting and the water mass properties of ice shelf cavities. However, the eddy energy generation and dissipation mechanisms in ice shelf cavities have not been studied systematically. The dynamic processes of the ocean circulation in the Amery Ice Shelf cavity are studied quantitatively through a Lorenz energy cycle approach for the first time by using the outputs of a high-resolution coupled regional ocean-sea ice-ice shelf model. Over the entire sub-ice-shelf cavity, mean available potential energy (MAPE) is the largest energy reservoir (112 TJ), followed by the mean kinetic energy (MKE, 70 TJ) and eddy available potential energy (EAPE, 10 TJ). The eddy kinetic energy (EKE) is the smallest pool (5.5 TJ), which is roughly 8% of the MKE, indicating significantly suppressed eddy activities by the drag stresses at ice shelf base and bottom topography. The total generation rate of available potential energy is about 1.0 GW, almost all of which is generated by basal melting and seawater refreezing, i.e., the so-called “ice pump.” The energy generated by ice pump is mainly dissipated by the ocean-ice shelf and ocean-bottom drag stresses, amounting to 0.3 GW and 0.2 GW, respectively. The EKE is generated through two pathways: the barotropic pathway MAPE→MKE→EKE (0.03 GW) and the baroclinic pathway MAPE→EAPE→EKE (0.2 GW). In addition to directly supplying the EAPE through baroclinic pathway (0.2 GW), MAPE also provides 0.5 GW of power to MKE to facilitate the barotropic pathway.

2021 ◽  
Author(s):  
Jing Jin ◽  
Antony J. Payne ◽  
William Seviour ◽  
Christopher Bull

<p>The basal melting of the Amery Ice Shelf (AIS) in East Antarctica and its connections with the oceanic circulation are investigated by a regional ocean model. The simulated estimations of net melt rate over AIS from 1976 to 2005 vary from 1 to 2 m/yr depending primarily due to inflow of modified Circumpolar Deep Water (mCDW). Prydz Bay Eastern Costal Current (PBECC) and the eastern branch of Prydz Bay Gyre (PBG) are identified as two main mCDW intrusion pathways. The oceanic heat transport from both PBECC and PBG has significant seasonal variability, which is associated with the Antarctic Slope Current. The onshore heat transport has a long-lasting effect on basal melting. The basal melting is primarily driven by the inflowing water masses though a positive feedback mechanism. The intruding warm water masses destabilize the thermodynamic structure in the sub-ice shelf cavity therefore enhancing the overturning circulations, leading to further melting due to increasing heat transport. However, the inflowing saltier water masses due to sea-ice formation could offset the effect of temperature through stratifying the thermodynamic structure, then suppressing the overturning circulation and reducing the basal melting.</p>


2015 ◽  
Vol 45 (10) ◽  
pp. 2522-2543 ◽  
Author(s):  
Alberto Scotti

AbstractThis paper uses the energetics framework developed by Scotti and White to provide a critical assessment of the widely used Thorpe-scale method, which is used to estimate dissipation and mixing rates in stratified turbulent flows from density measurements along vertical profiles. This study shows that the relevant displacement scale in general is not the rms value of the Thorpe displacement. Rather, the displacement field must be Reynolds decomposed to separate the mean from the turbulent component, and it is the turbulent component that ought to be used to diagnose mixing and dissipation. In general, the energetics of mixing in an overall stably stratified flow involves potentially complex exchanges among the available potential energy and kinetic energy associated with the mean and turbulent components of the flow. The author considers two limiting cases: shear-driven mixing, where mixing comes at the expense of the mean kinetic energy of the flow, and convective-driven mixing, which taps the available potential energy of the mean flow to drive mixing. In shear-driven flows, the rms of the Thorpe displacement, known as the Thorpe scale is shown to be equivalent to the turbulent component of the displacement. In this case, the Thorpe scale approximates the Ozmidov scale, or, which is the same, the Thorpe scale is the appropriate scale to diagnose mixing and dissipation. However, when mixing is driven by the available potential energy of the mean flow (convective-driven mixing), this study shows that the Thorpe scale is (much) larger than the Ozmidov scale. Using the rms of the Thorpe displacement overestimates dissipation and mixing, since the amount of turbulent available potential energy (measured by the turbulent displacement) is only a fraction of the total available potential energy (measured by the Thorpe scale). Corrective measures are discussed that can be used to diagnose mixing from knowledge of the Thorpe displacement. In a companion paper, Mater et al. analyze field data and show that the Thorpe scale can indeed be much larger than the Ozmidov scale.


1998 ◽  
Vol 27 ◽  
pp. 75-80 ◽  
Author(s):  
M.J.M. Williams ◽  
R. C. Warner ◽  
W. F. Budd

Using a three-dimensional ocean model specially adapted to the ocean cavity under the Amery Ice Shelf, we investigated the present ocean circulation and pattern of ice-shelf basal melting and freezing, the differences which would result from temperature changes in the seas adjacent to the Amery Ice Shelf, and the ramifications of these changes for the mass balance of the ice shelf. Under present conditions we estimate the net loss from the Amery Ice Shelf from excess basal melting over freezing at approximately 7.8 Gt a−1. This comprises a gross loss of 11.4 Gt a−1 at a mean rate of 0.42 m a−1, which is partially offset by freezing-on of 3.6 Gt a−1, at a mean rate of 0.19 m a−1. When the adjacent seas were assumed to warm by 1°C, we found the net melt increased to 31.6 Gt a−1, comprising 34.6 Gt a−1 of gross melt and 3.0 Gt a−1 of freezing.


2019 ◽  
Vol 869 ◽  
pp. 214-237
Author(s):  
Pranav Puthan ◽  
Masoud Jalali ◽  
Vamsi K. Chalamalla ◽  
Sutanu Sarkar

Turbulence and mixing in a near-bottom convectively driven flow are examined by numerical simulations of a model problem: a statically unstable disturbance at a slope with inclination $\unicode[STIX]{x1D6FD}$ in a stable background with buoyancy frequency $N$ . The influence of slope angle and initial disturbance amplitude are quantified in a parametric study. The flow evolution involves energy exchange between four energy reservoirs, namely the mean and turbulent components of kinetic energy (KE) and available potential energy (APE). In contrast to the zero-slope case where the mean flow is negligible, the presence of a slope leads to a current that oscillates with $\unicode[STIX]{x1D714}=N\sin \unicode[STIX]{x1D6FD}$ and qualitatively changes the subsequent evolution of the initial density disturbance. The frequency, $N\sin \unicode[STIX]{x1D6FD}$ , and the initial speed of the current are predicted using linear theory. The energy transfer in the sloping cases is dominated by an oscillatory exchange between mean APE and mean KE with a transfer to turbulence at specific phases. In all simulated cases, the positive buoyancy flux during episodes of convective instability at the zero-velocity phase is the dominant contributor to turbulent kinetic energy (TKE) although the shear production becomes increasingly important with increasing  $\unicode[STIX]{x1D6FD}$ . Energy that initially resides wholly in mean available potential energy is lost through conversion to turbulence and the subsequent dissipation of TKE and turbulent available potential energy. A key result is that, in contrast to the explosive loss of energy during the initial convective instability in the non-sloping case, the sloping cases exhibit a more gradual energy loss that is sustained over a long time interval. The slope-parallel oscillation introduces a new flow time scale $T=2\unicode[STIX]{x03C0}/(N\sin \unicode[STIX]{x1D6FD})$ and, consequently, the fraction of initial APE that is converted to turbulence during convective instability progressively decreases with increasing $\unicode[STIX]{x1D6FD}$ . For moderate slopes with $\unicode[STIX]{x1D6FD}<10^{\circ }$ , most of the net energy loss takes place during an initial, short ( $Nt\approx 20$ ) interval with periodic convective overturns. For steeper slopes, most of the energy loss takes place during a later, long ( $Nt>100$ ) interval when both shear and convective instability occur, and the energy loss rate is approximately constant. The mixing efficiency during the initial period dominated by convectively driven turbulence is found to be substantially higher (exceeds 0.5) than the widely used value of 0.2. The mixing efficiency at long time in the present problem of a convective overturn at a boundary varies between 0.24 and 0.3.


2015 ◽  
Vol 45 (4) ◽  
pp. 1103-1120 ◽  
Author(s):  
Dujuan Kang ◽  
Enrique N. Curchitser

AbstractA detailed energetics analysis of the Gulf Stream (GS) and associated eddies is performed using a high-resolution multidecadal regional ocean model simulation. The energy equations for the time-mean and time-varying flows are derived as a theoretical framework for the analysis. The eddy–mean flow energy components and their conversions show complex spatial distributions. In the along-coast region, the cross-stream and cross-bump variations are seen in the eddy–mean flow energy conversions, whereas in the off-coast region, a mixed positive–negative conversion pattern is observed. The local variations of the eddy–mean flow interaction are influenced by the varying bottom topography. When considering the domain-averaged energetics, the eddy–mean flow interaction shows significant along-stream variability. Upstream of Cape Hatteras, the energy is mainly transferred from the mean flow to the eddy field through barotropic and baroclinic instabilities. Upon separating from the coast, the GS becomes highly unstable and both energy conversions intensify. When the GS flows into the off-coast region, an inverse conversion from the eddy field to the mean flow dominates the power transfer. For the entire GS region, the mean current is intrinsically unstable and transfers 28.26 GW of kinetic energy and 26.80 GW of available potential energy to the eddy field. The mesoscale eddy kinetic energy is generated by mixed barotropic and baroclinic instabilities, contributing 28.26 and 9.15 GW, respectively. Beyond directly supplying the barotropic pathway, mean kinetic energy also provides 11.55 GW of power to mean available potential energy and subsequently facilitates the baroclinic instability pathway.


2006 ◽  
Vol 63 (12) ◽  
pp. 3277-3295 ◽  
Author(s):  
Sachiyo Uno ◽  
Toshiki Iwasaki

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave effects, conservation properties, and lower boundary conditions. To gain physical insights into energetics based on the nonacceleration theorem, the wave energy W is defined as the sum of the eddy available potential energy PE and the eddy kinetic energy KE. The mainstream of the energy cascade is as follows: The diabatic heating produces the zonal mean available potential energy PZ, which is converted into the zonal mean kinetic energy KZ through the mean meridional circulation. The KZ is mainly converted to W through zonal wave–mean flow interactions and the rest is dissipated through friction. Not only the dynamical conversion but also the diabatic heating generates W, which is dissipated through friction. A diagnosis package is designed to analyze actual atmospheric data on the standard pressure surfaces. A validation study of the package is made by using the output from a general circulation model. The scheme accurately expresses tendencies of the zonal mean and eddy available potential energy equations, showing the diagnosis capability. On shorter time scales, PE changes in accordance with KE, good correlation indicating the relevance of the definition of wave energy. A preliminary study is made of the climate in December–February (DJF), and June–August (JJA), using the NCEP–NCAR reanalysis. The dynamical wave energy generation rate C(KZ, W) is about 60% of the conversion rate C(PZ, KZ), which means that KZ is dissipated through friction at a rate of about 40%. In the extratropics, C(KZ, W) is almost equal to C(PZ, KZ), as is expected from quasigeostrophic balance. In the subtropics, however, C(KZ, W) is much smaller than C(PZ, KZ), which suggests the importance of nongeostrophic effects on the energetics. The energetics is substantially different between the two solstices. Both C(PZ, KZ) and C(KZ, W) are about 30% larger in DJF than those in JJA, reflecting differences in wave activity. Stationary waves contribute considerably to energy conversions in the Northern Hemispheric winter, while baroclinic instability waves do more in the Southern Hemispheric winter than in the Northern Hemispheric winter.


2018 ◽  
Vol 48 (8) ◽  
pp. 1867-1883 ◽  
Author(s):  
Alain Colin de Verdière ◽  
Thierry Huck ◽  
Souren Pogossian ◽  
Michel Ollitrault

AbstractThe vertically integrated potential energy of an incompressible stratified fluid formulated in density coordinates can be simply written as a weighted vertical sum of the squares of the vertical displacements of density surfaces, a general expression valid for arbitrary displacements. The sum of this form of potential energy and kinetic energy is then a conserved quantity for the multilayer shallow water model. The formulation in density coordinates is a natural one to find the Lorenz reference state of available potential energy (APE). We describe the method to compute the APE of an ocean state and provide two applications. The first is the classical double-gyre, wind-driven circulation simulated by a shallow water model at high resolution. We show that the eddy kinetic and eddy potential energies are localized in regions of large gradients of mean APE. These large gradients surround an APE minimum found between the two gyres. The second is the time-mean World Ocean Circulation reconstructed from hydrography (World Ocean Atlas) and reference velocities at 1000 db from the Argo float program to obtain an absolute circulation. The total available potential energy exceeds the total mean kinetic energy of the World Ocean by three orders of magnitude, pointing out the very small Burger number of the circulation. The Gulf Stream, the Kuroshio, the Agulhas retroflection, and the confluence regions are four examples that confirm the shallow water model results that large gradients of mean available potential energy can be used as predictors for the presence of high eddy kinetic energy (obtained here from satellite altimetry).


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2020 ◽  
Vol 50 (11) ◽  
pp. 3205-3217
Author(s):  
Carl Wunsch

AbstractA recent paper by Hu et al. (https://doi.org/10.1126/sciadv.aax7727) has raised the interesting question of whether the ocean circulation has been “speeding up” in the last decades. Their result contrasts with some estimates of the lack of major trends in oceanic surface gravity waves and wind stress. In general, both the increased energy and implied power inputs of the calculated circulation correspond to a small fraction of the very noisy background values. An example is the implied power increase of about 3 × 108 W, as compared to wind energy inputs of order 1012 W. Here the problem is reexamined using a state estimate that has the virtue of being energy, mass, etc. conserving. Because it is an estimate over an entire recent 26-yr interval, it is less sensitive to the strong changes in observational data density and distribution, and it does not rely upon nonconservative “reanalyses.” The focus is on the energy lying in the surface layers of the ocean. A potential energy increase is found, but it is almost completely unavailable—arising from the increase in mean sea level. A weak increase in kinetic energy in the top layer (10 m) is confirmed, corresponding to an increase of order 1 cm s−1 yr−1 over 26 years. An estimate of kinetic energy in the full water column shows no monotonic trend, but the changes in the corresponding available potential energy are not calculated here.


2012 ◽  
Vol 58 (212) ◽  
pp. 1227-1244 ◽  
Author(s):  
Carl V. Gladish ◽  
David M. Holland ◽  
Paul R. Holland ◽  
Stephen F. Price

AbstractA numerical model for an interacting ice shelf and ocean is presented in which the ice- shelf base exhibits a channelized morphology similar to that observed beneath Petermann Gletscher’s (Greenland) floating ice shelf. Channels are initiated by irregularities in the ice along the grounding line and then enlarged by ocean melting. To a first approximation, spatially variable basal melting seaward of the grounding line acts as a steel-rule die or a stencil, imparting a channelized form to the ice base as it passes by. Ocean circulation in the region of high melt is inertial in the along-channel direction and geostrophically balanced in the transverse direction. Melt rates depend on the wavelength of imposed variations in ice thickness where it enters the shelf, with shorter wavelengths reducing overall melting. Petermann Gletscher’s narrow basal channels may therefore act to preserve the ice shelf against excessive melting. Overall melting in the model increases for a warming of the subsurface water. The same sensitivity holds for very slight cooling, but for cooling of a few tenths of a degree a reorganization of the spatial pattern of melting leads, surprisingly, to catastrophic thinning of the ice shelf 12 km from the grounding line. Subglacial discharge of fresh water along the grounding line increases overall melting. The eventual steady state depends on when discharge is initiated in the transient history of the ice, showing that multiple steady states of the coupled system exist in general.


Sign in / Sign up

Export Citation Format

Share Document