scholarly journals Diets and Seasonal Ingestion Rates of Aurelia coerulea (Cnidaria: Scyphozoa) Polyps by in situ Feeding Experiments in Jiaozhou Bay, China

2021 ◽  
Vol 8 ◽  
Author(s):  
Wang Pengpeng ◽  
Zhang Fang ◽  
Guo Dongjie ◽  
Sun Song

The benthic scyphopolyp population is an important stage in the scyphozoan lifecycle. Nevertheless, few studies have detailed the natural feeding and quantified the energy flux of polyps based on field research. To better understand the scyphopolyp natural diet and seasonal variation patterns in the ingestion rate, in situ feeding experiments were conducted on Aurelia coerulea polyps in Jiaozhou Bay, China from August 2018 to April 2019. The diet of A. coerulea polyps was determined by gut content analysis. Digestion rates were also measured. Ingestion rates, based on the gut contents and digestion rates, were assessed monthly. Copepods, copepod nauplii, and ciliates were identified in the guts of A. coerulea polyps. Copepods with the bulk of total prey intake in number are an important source of nutrition for A. coerulea polyps in Jiaozhou Bay. Prey capture of A. coerulea polyps (prey polyp–1) varied among months, and was highly dependent upon the abundance of planktonic prey in the habitat. Copepods and copepod nauplii were digested more rapidly as temperature increased. Carbon weight-specific ingestion rate exhibited an obvious seasonal change, with the mean value of 0.13 ± 0.12 μg C μg C–1 d–1. More rapid digestion of prey at higher temperatures and larger prey availability would cause a higher ingestion rate in polyps. Scyphopolyps are widely distributed predators in littoral ecosystems and they may play an important role in plankton–benthos coupling by transferring energy from the water column to the benthos. Massive scyphopolyps blooms may influence pelagic ecosystems.

2007 ◽  
pp. 305-307 ◽  
Author(s):  
Edward G. Durbin ◽  
Robert G. Campbell

Correction for chlorophyll pigment destruction has been frequently used in calculation of copepod ingestion rates using the gut pigment method. We argue that tracers in the gut may be either digested and assimilated, or evacuated, and that both processes are taken into account when an evacuation (disappearance) rate curve is determined. As a result, any correction for gut pigment destruction in calculating ingestion rate is inappropriate.


2019 ◽  
Vol 49 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Yanli Lei ◽  
Chengchun Li ◽  
Tiegang Li ◽  
Zhimin Jian

Abstract The majority of sediment-dwelling foraminifera are thought to be deposit feeders. They use their reticulopodia to gather sediment with associated algae, organic detritus, and bacteria. Uptake of diatoms by foraminifera have been observed but rarely quantified. We measured the clearance (gathering) rate and ingestion rate of diatoms by the common benthic foraminifer Quinqueloculina seminula using Nitzschia closterium as prey under laboratory culture conditions. Grazing experiments were performed to evaluate the effects of temperature (at 12, 15, 18, 21, and 24°C) and food availability (10 to 800 cells mm−2) on uptake rates of diatoms. The clearance rates, estimated from the disappearance of food items, were variable (0.59–4.4 mm2 foram−1 h−1) and did not show a clear relationship with food availability. The maximum clearance rates increased from 1.80 ± 0.21 to 2.69 ± 0.32 mm2 foram−1 h−1 when temperature increased from 12 to 18°C and decreased to 2.28 ± 0.25 mm2 foram−1 h−1 at 24°C. Ingestion rates varied from 1.0 to 43 × 103 diatoms foram−1 h−1, following a hyperbolic response to food concentrations at all experimental temperatures. The maximum individual ingestion rates increased from 842 ± 180 to 1648 ± 480 (mean ± SE) cells foram−1 h−1 and then decreased to 316 ± 54 cells foram−1 h−1 as temperature increased from 12 to 24°C. Experimental results revealed that 12–18°C was the optimal temperature range for Q. seminula feeding for specimens adapted to local conditions. Our study indicates that Q. seminula plays an ecological role by feeding upon benthic diatoms in marine benthic ecosystems.


1986 ◽  
Vol 64 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Redwood W. Nero ◽  
W. Gary Sprules

We examine the influence of three glacial opportunist predators, Mysis relicta, Limnocalanus macrurus, and Senecella calanoides, on natural zooplankton communities of central Ontario through a series of feeding experiments in small enclosures (23.6 L). Estimates of in situ clearance rates by M. relicta match previously determined rates, with the following gradation of values: Asplanchna sp. > daphnids and bosminids > Epischura lacustris > large cyclopoids, Chydorus sphaericus and small Diaptomus sp. > L. macrurus > S. calanoides. Clearance rates by M. relicta are similar for all daphnids and bosminids. Hypolimnetic species like Daphnia longiremis and Eubosmina longispina are apparently eliminated by M. relicta, while similarly vulnerable species survive because they have an epilimnetic refuge from M. relicta. Limnocalanus macrurus and S. calanoides prey primarily on copepods, Diaphanosoma spp., and rotifers in the hypolimnion. When both clearance rates and population densities of M. relicta, L. macrurus, and S. calanoides are taken into account, the total predatory impact of M. relicta is much larger than that of the two relict copepods. Based on a theoretical comparison of measured clearance rates by predators with estimated rates of prey recruitment, we conclude that differences in species composition and abundance between relict and nonrelict lakes described in a previous survey are due principally to predation by M. relicta.


2003 ◽  
Vol 60 (12) ◽  
pp. 1517-1526 ◽  
Author(s):  
Alex De Robertis ◽  
Clifford H Ryer ◽  
Adriana Veloza ◽  
Richard D Brodeur

Contrast degradation theory predicts that increased turbidity decreases the visibility of objects that are visible at longer distances more than that of objects that are visible at short distances. Consequently, turbidity should disproportionately decrease feeding rates by piscivorous fish, which feed on larger and more visible prey than particle-feeding planktivorous fish. We tested this prediction in a series of laboratory feeding experiments, the results of which indicated that prey consumption by two species of planktivorous fish (juvenile chum salmon (Oncorhynchus keta) and walleye pollock (Theragra chalcogramma)) is much less sensitive to elevated turbidity than piscivorous feeding by sablefish (Anoplopoma fimbria). Planktivorous feeding in the turbidity range tested (0–40 nephelometric turbidity units (NTU)) was reduced at high light intensity, but not at low light intensity. Comparatively low (5–10 NTU) turbidity decreased both the rate at which sablefish pursued prey and the probability of successful prey capture. These results suggest that turbid environments may be advantageous for planktivorous fish because they will be less vulnerable to predation by piscivores, but will not experience a substantial decrease in their ability to capture zooplankton prey.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sang Ah Park ◽  
Hae Jin Jeong ◽  
Jin Hee Ok ◽  
Hee Chang Kang ◽  
Ji Hyun You ◽  
...  

The newly described dinoflagellate, Shimiella gracilenta, is known to survive for approximately 1 month on the plastids of ingested prey cells during starvation, indicating kleptoplastidy. To understand the population dynamics of this dinoflagellate in marine planktonic food webs, its growth and mortality rate due to predation should be assessed. Thus, we investigated the feeding occurrence of eight common heterotrophic protists on S. gracilenta. We also determined the growth and ingestion rates of Oxyrrhis marina and the naked ciliate, Rimostrombidium sp. on S. gracilenta as a function of the prey concentration. The common heterotrophic dinoflagellates (HTDs) Gyrodinium dominans, O. marina, and Pfiesteria piscicida and a naked ciliate Rimostrombidium sp. were able to feed on S. gracilenta; whereas the HTDs Aduncodinium glandula, Gyrodinium jinhaense, Oblea rotunda, and Polykrikos kofoidii were not. Shimiella gracilenta supported positive growth of O. marina and Rimostrombidium sp. but did not support that of G. dominans and P. piscicida. With increasing prey concentrations, the growth and ingestion rates of O. marina and Rimostrombidium sp. on S. gracilenta increased and became saturated. The maximum growth rates of O. marina and Rimostrombidium sp. on S. gracilenta were 0.645 and 0.903 day−1, respectively. Furthermore, the maximum ingestion rates of O. marina and Rimostrombidium sp. on S. gracilenta were 0.11 ng C predator day−1 (1.6 cells predator−1 day−1) and 35 ng C predator day−1 (500 cells predator−1 day−1), respectively. The maximum ingestion rate of O. marina on S. gracilenta was lower than that on any other algal prey reported to date, although its maximum growth rate was moderate. In conclusion, S. gracilenta had only a few common heterotrophic protist predators but could support moderate growth rates of the predators. Thus, S. gracilenta may not be a common prey species for diverse heterotrophic protists but may be a suitable prey for a few heterotrophic protists.


2016 ◽  
Vol 63 (3) ◽  
Author(s):  
Jayasree Loka ◽  
K.K. Philipose ◽  
S.M. Sonali

Effect of marine microalgal diet on filtration and ingestion rates of Brachionus plicatilis was studied. Marine microalgae viz., Nannochloropsis oculata, Isochrysis galbana, Chaetoceros calcitrans and a combination of N. oculata and I. galbana (Nanno+Iso) at different cell concentrations were selected for the experiment and triplicates were maintained for each feed. Significant difference (p<0.05) was observed in the filtration and ingestion rates of B. plicatilis, between the treatments. Peak filtration rate of 12.2x10-5 cells ml-1 ind-1 min-1 was recorded in B. plicatilis fed with Nanno+Iso, followed by I. galbana. Ingestion rate was found to be significantly high (p<0.05) for those fed with C. calcitrans, followed by Nanno+Iso. Filtration rate was significantly high (p<0.05) in rotifers stocked at an initial density of 50 nos. ml-1 fed with Nanno+Iso. The results indicated that a combination of Nanno and Iso is the best suitable microalgal diet for rotifer with peak filtration (12.2x10-5cells ml-1 ind-1 min-1) and ingestion (5.4x10-3 cells ml-1 ind-1 min-1) rates during the first 60 min.


1980 ◽  
Vol 58 (9) ◽  
pp. 1564-1574 ◽  
Author(s):  
J. P. Myers ◽  
S. L. Williams ◽  
F. A. Pitelka

We investigated the role of prey size, prey depth, prey microdistribution, and substrate penetrability in affecting prey availability to sanderlings (Calidris alba Pallas). Five experiments were performed in the laboratory manipulating these availability factors and prey density in beach sand. The effects on prey risk and sanderling prey capture rate were measured.Prey risk increased linearly with prey size. Prey within 10 mm of the surface were vulnerable to predation but their risk decreased sharply below that depth. Substrate penetrability affected prey risk by controlling how deeply a sanderling could probe beneath the sand surface while searching for prey.Prey capture rates varied between 0.01 and 0.84 captures per second of search time over a range of prey density between 60 and 1200 prey per square metre. Prey size and substrate penetrability affected capture rate through their effect on prey risk, and substrate penetrability also influenced capture rate directly. Prey density had the strongest effect on prey capture rate. Measurements in the field around Bodega Bay, California, indicate that prey density, prey size, prey depth, and substrate penetrability can have significant impact on sanderling foraging under field conditions.


2021 ◽  
Author(s):  
Christiane Schmidt ◽  
Geslin Emmanuelle ◽  
Bernhard Joan M. ◽  
LeKieffre Charlotte ◽  
Roberge Helene ◽  
...  

&lt;p&gt;Foraminifera on the seafloor are known to have species-specific feeding habits. Among those are deposit feeders, eating organic detritus and bacteria. Little is known about the feeding habits of foraminifera from Arctic seep environments. That is, in particular, of interest as variable &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C values in the tests of foraminifera have been suggested to be partly linked with a diet rich in bacteria, themselves lighter in &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C values. As there is little information on the ecology of the foraminifer &lt;em&gt;Nonionellina labradorica&lt;/em&gt; (Dawson, 1860), this study examined feeding habits on bacteria and compared them to in situ collected specimens, using Transmission Electron microscopy (TEM). As bacterial food, the marine methane-oxidizing bacterium &lt;em&gt;Methyloprofundus sedimenti&lt;/em&gt; was chosen, which is an important representative of methanotrophs in the marine environment near methane seeps. Sediment samples containing living N. labradorica specimens collected in close vicinity(approx. 5 m) from an active methane seep in Storfjordrenna, Barents Sea (382-m water depth).&amp;#160; We performed a feeding experiment on &lt;em&gt;N. labradorica &lt;/em&gt;(n=17 specimen), which were incubated in the dark at in situ temperature. Specimens were fed at the beginning of the experiment, except the un-fed controls, and incubations terminated after 4, 8 and 20 h. After fixation in epoxy resin the ultrastructure of all specimens and their food vacuoles was observed and compared using a TEM. All examined specimens were living at the time of fixation, based on observation of intact mitochondrial membranes. In all specimens, inorganic detritus was preserved inside food vacuoles. Closer observation of food vacuoles also revealed that in addition to inorganic debris, such as clay, occasionally bacteria were visible. This led us to conclude that our &lt;em&gt;N. labradorica &lt;/em&gt;can&amp;#160; generally be classified as a deposit feeder, which is rather a generalist than a specialist. Regarding uptake of &lt;em&gt;M. sedimenti&lt;/em&gt;, the timing of the experimentation seemed to be critical. We did not observe methanotrophs preserved in the resin at the 4 and 8 h incubations, but found two putative methanotrophs near the apertural region after the 20-h incubation. After closer observation, we could identify one of those two putative specimen as the menthanothroph &lt;em&gt;M. sedimenti&lt;/em&gt; near the foraminiferal aperture, based on presence of a typical type I stacked intracytoplasmic membrane (ICM) and storage granules (SC). We concluded that &lt;em&gt;N. labradorica&lt;/em&gt; may ingest &lt;em&gt;M. sedimenti&lt;/em&gt; via &amp;#8220;untargeted grazing&amp;#8221; in seeps. Further studies must examine the exact relationship between diet and &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C in foraminiferal test on several different paleo-oceanographically relevant species.&lt;/p&gt;


2018 ◽  
Vol 47 (3) ◽  
pp. 296-302 ◽  
Author(s):  
Zakaria A. Mohamed ◽  
Asmaa A. Bakr ◽  
Hamed A. Ghramh

Abstract Grazing of zooplankton on phytoplankton may contribute to a reduction of harmful cyanobacteria in eutrophic waters. However, the feeding capacity and interaction between zooplankton and toxic cyanobacteria vary among grazer species. In this study, laboratory feeding experiments were designed to measure the grazing rate of the copepod Cyclops vicinus on Microcystis aeruginosa and the potential microcystin (MC) accumulation in the grazer. Copepods were fed a mixed diet of the edible green alga Ankistrodesmus falcatus and toxic M. aeruginosa for 10 days. The results showed that C. vicinus efficiently ingested toxic Microcystis cells with high grazing rates, varying during the feeding period (68.9–606.3 Microcystis cells animal-1 d-1) along with Microcystis cell density. Microcystis cells exhibited a remarkable induction in MC production under grazing conditions with concentrations 1.67–12.5 times higher than those in control cultures. Furthermore, C. vicinus was found to accumulate MCs in its body with concentrations increasing during the experiment (0.05–3.21 μg MC animal-1). Further in situ studies are needed to investigate the ability of Cyclops and other copepods to assimilate and detoxify MCs at environmentally relevant concentrations before deciding on the biocontrol of Microcystis blooms by copepods.


2005 ◽  
Vol 65 (1) ◽  
pp. 1-8 ◽  
Author(s):  
F. G Araújo ◽  
C. C Andrade ◽  
R. N Santos ◽  
A. F. G. N Santos ◽  
L. N Santos

We assessed spatial and seasonal changes in the diet of Oligosarcus hepsetus in order to describe the strategy developed by this species that allows their very high abundance in Lajes reservoir, Rio de Janeiro, Brazil. Fish samplings were carried out using gill nets, deployed during ca. 12 and 24 hours, between April 2001 and May 2002. A total of 289 individuals were examined, of which 97 showed gut contents. We used the index of relative importance (IRI) to compare probable dietary shifts, and the frequency of occurrence (% OC) to analyze possible ontogenetic influences on feeding. O. hepsetus showed carnivorous habits, feeding preferably on fish and insects, the latter of which occurred in 71.0% of the guts presenting contents. O. hepsetus consumed different items along the three reservoir zones: insects (61.0% IRI) and Cichla monoculus (38.9% IRI) in the lower zone; Lepidoptera (57.0% IRI) in the middle zone; and C. monoculus (77.0% IRI) in the upper zone. Food items changed seasonally with C. monoculus predominating in autumn 2001, and Hymenoptera and Lepidoptera in the winter. In spring almost all food was Lepidoptera (99.8% IRI), while in the summer Hemiptera dominated in the diet. In autumn 2002 Hemiptera (97.0% IRI) was dominant, in significant contrast with the previous autumn. Individuals smaller than 190 mm SL fed heavily on insects, while fishes predominated in the diet of individuals larger than 190 mm SL. Shifts in prey-capture ability among length classes suggest decreasing intraspecific competition. A higher food plasticity seems to be the strategy employed by this opportunist species, which used food resources available in the reservoir.


Sign in / Sign up

Export Citation Format

Share Document