scholarly journals Thermal–Mechanical Processing and Strengthen in AlxCoCrFeNi High-Entropy Alloys

2021 ◽  
Vol 7 ◽  
Author(s):  
Jinshan Li ◽  
Haoxue Yang ◽  
William Yi Wang ◽  
Hongchao Kou ◽  
Jun Wang

In this study high-entropy alloys (HEAs) were devised based on a new alloy design concept, which breaks with traditional design methods for conventional alloys. As a novel alloy, HEAs have demonstrated excellent engineering properties and possible combinations of diverse properties for their unique tunable microstructures and properties. This review article explains the phase transition mechanism and mechanical properties of high-entropy alloys under the thermal-mechanical coupling effect, which is conducive to deepening the role of deformation combines annealing on the structure control and performance improvement of high-entropy alloys, giving HEAs a series of outstanding performance and engineering application prospect. To reach this goal we have explored the microstructural evolution, formation of secondary phases at high and/or intermediate temperatures and their effect on the mechanical properties of the well known AlxCoCrFeNi HEAs system, which not only has an important role in deepening the understanding of phase transition mechanism in AlxCoCrFeNi HEAs, but also has important engineering application value for promoting the application of high-entropy alloys.

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 974 ◽  
Author(s):  
Lijia Chen ◽  
Kirsten Bobzin ◽  
Zheng Zhou ◽  
Lidong Zhao ◽  
Mehmet Öte ◽  
...  

High-entropy alloys exhibit some interesting mechanical properties including an excellent resistance against softening at elevated temperatures. This gives high-entropy alloys (HEAs) great potential as new structural materials for high-temperature applications. In a previous study of the authors, oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high-entropy alloys at T = 800 °C, 900 °C and 1000 °C was investigated. Si-alloying was found to increase the oxidation resistance by promoting the formation of a continuous Al2O3 layer, avoiding the formation of AlN at T = 800 °C. Obvious phase changes were identified in the surface areas of both alloys after the oxidation experiments. However, the effects of heat treatment and Si-alloying on the phase transition in the bulk were not investigated yet. In this study, Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high-entropy alloys were heat-treated at T = 800 °C and T = 1000 °C to investigate the effect of heat treatment on microstructure, phase composition and mechanical properties of both alloys. The results show that alloying Al0.6CrFeCoNi with Si caused a phase transition from dual phases consisting of BCC and FCC to a single BCC phase in an as-cast condition. Furthermore, increased hardness for as-cast and heat-treated samples compared with the Al0.6CrFeCoNi alloy was observed. In addition, the heat treatment facilitated the phase transition and the precipitation of the intermetallic phase, which resulted in the change of the mechanical properties of the alloys.


2020 ◽  
Vol 2020 (4) ◽  
pp. 16-22
Author(s):  
A.I. Ustinov ◽  
◽  
V.S. Skorodzievskii ◽  
S.A. Demchenkov ◽  
S.S. Polishchuk ◽  
...  

2021 ◽  
Vol 282 ◽  
pp. 128736 ◽  
Author(s):  
Qingkai Shen ◽  
Xiangdong Kong ◽  
Xizhang Chen ◽  
Xukai Yao ◽  
Vladislav B. Deev ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 2832
Author(s):  
Haibo Liu ◽  
Cunlin Xin ◽  
Lei Liu ◽  
Chunqiang Zhuang

The structural stability of high-entropy alloys (HEAs) is closely related to their mechanical properties. The precise control of the component content is a key step toward understanding their structural stability and further determining their mechanical properties. In this study, first-principle calculations were performed to investigate the effects of different contents of each component on the structural stability and mechanical properties of Co-Cr-Fe-Ni HEAs based on the supercell model. Co-Cr-Fe-Ni HEAs were constructed based on a single face-centered cubic (FCC) solid solution. Elemental components have a clear effect on their structure and performance; the Cr and Fe elements have an obvious effect on the structural stability and equilibrium lattice constant, respectively. The Ni elements have an obvious effect on stiffness. The Pugh ratios indicate that Cr and Ni addition may increase ductility, whereas Co and Fe addition may decrease it. With increasing Co and Fe contents or decreasing Cr and Ni contents, the structural stability and stiffness of Co-Cr-Fe-Ni HEAs are improved. The structural stability and mechanical properties may be related to the strength of the metallic bonding and covalent bonding inside Co-Cr-Fe-Ni HEAs, which, in turn, is determined by the change in element content. Our results provide the underlying insights needed to guide the optimization of Co-Cr-Fe-Ni HEAs with excellent mechanical properties.


2011 ◽  
Vol 19 (5) ◽  
pp. 698-706 ◽  
Author(s):  
O.N. Senkov ◽  
G.B. Wilks ◽  
J.M. Scott ◽  
D.B. Miracle

2017 ◽  
Vol 898 ◽  
pp. 638-642 ◽  
Author(s):  
Dong Xu Qiao ◽  
Hui Jiang ◽  
Xiao Xue Chang ◽  
Yi Ping Lu ◽  
Ting Ju Li

A series of refractory high-entropy alloys VTaTiMoAlx with x=0,0.2,0.6,1.0 were designed and produced by vacuum arc melting. The effect of added Al elements on the microstructure and mechanical properties of refractory high-entropy alloys were investigated. The X-ray diffraction results showed that all the high-entropy alloys consist of simple BCC solid solution. SEM indicated that the microstructure of VTaTiMoAlx changes from equiaxial dendritic-like structure to typical dendrite structure with the addition of Al element. The composition of different regions in the alloys are obtained by energy dispersive spectroscopy and shows that Ta, Mo elements are enriched in the dendrite areas, and Al, Ti, V are enriched in inter-dendrite areas. The yield strength and compress strain reach maximum (σ0.2=1221MPa, ε=9.91%) at x=0, and decrease with the addition of Al element at room temperature. Vickers hardness of the alloys improves as the Al addition.


Sign in / Sign up

Export Citation Format

Share Document