scholarly journals Preparation of ZnO/Brucite Functional Composite Powder by the Mechanochemical Method

2021 ◽  
Vol 8 ◽  
Author(s):  
Huan Shuai ◽  
Jiao Wang ◽  
Fengguo Ren ◽  
Gaoxiang Du

In this experiment, ZnO/brucite composite powder was prepared through the mechanochemical method; further, the properties, particle morphology, and structure of the composite powder were characterized. The results show that mechanical grinding action can promote the production of a large number of surface ions with unsaturated coordination number on the surface of brucite and ZnO particles, thereby promoting hydroxylation of the particle surfaces. The addition of NaOH to the composite system can also aid the further activation of the surface of the brucite and ZnO particles and the formation of more associated hydroxyl groups. Finally, a core–shell composite powder is formed with weak forces such as hydrogen bonds and van der Waals forces as the connecting bonds.

2006 ◽  
Vol 317-318 ◽  
pp. 905-908 ◽  
Author(s):  
Jun Young Park ◽  
Jong Ho Lee ◽  
Joo Sun Kim ◽  
Hae Won Lee

A novel Ni-YSZ anode with interpenetrating phase composite (IPC) structure was developed using NiO-YSZ core-shell composite powder and evaluated in terms of microstructure, electrical conductivity, thermal expansion and flexural strength. In comparison to conventional anode, the anodic performance of IPC anode appeared to be more desirable for improving structural reliability of SOFC unit cells and stacks. This study reveals that the anodic performance of IPC anode can be readily tailored by controlling core-shell composite powder particles.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 310
Author(s):  
Dohyeon Han ◽  
Doohwan Lee

Fine control of morphology and exposed crystal facets of porous γ-Al2O3 is of significant importance in many application areas such as functional nanomaterials and heterogeneous catalysts. Herein, a morphology controlled in situ synthesis of Al@Al2O3 core–shell architecture consisting of an Al metal core and a porous γ-Al2O3 shell is explored based on interfacial hydrothermal reactions of an Al metal substrate in aqueous solutions of inorganic anions. It was found that the morphology and structure of boehmite (γ-AlOOH) nano-crystallites grown at the Al-metal/solution interface exhibit significant dependence on temperature, type of inorganic anions (Cl−, NO3−, and SO42−), and acid–base environment of the synthesis solution. Different extents of the electrostatic interactions between the protonated hydroxyl groups on (010) and (001) facets of γ-AlOOH and the inorganic anions (Cl−, NO3−, SO42−) appear to result in the preferential growth of γ-AlOOH toward specific crystallographic directions due to the selective capping of the facets by adsorption of the anions. It is hypothesized that the unique Al@Al2O3 core–shell architecture with controlled morphology and exposed crystal-facets of the γ-Al2O3 shell can provide significant intrinsic catalytic properties with enhanced heat and mass transport to heterogeneous catalysts for applications in many thermochemical reaction processes. The direct fabrication of γ-Al2O3 nano-crystallites from Al metal substrate with in-situ modulation of their morphologies and structures into 1D, 2D, and 3D nano-architectures explored in this work is unique and can offer significant opportunities over the conventional methods.


2021 ◽  
pp. 160127
Author(s):  
Zhen Wang ◽  
Mixue Tan ◽  
Jiang Wang ◽  
Jing Zeng ◽  
Fengjun Zhao ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
pp. 411-420
Author(s):  
Xue Bai ◽  
Dianxue Cao ◽  
Hongyu Zhang

Combining interfacial methods and mesoporous carbon channels, an asymmetric device, using N,S-codoped mesoporous carbon and a MnO2@MC-30 core shell composite, is assembled with high energy, power densities and outstanding cycling stability.


Sign in / Sign up

Export Citation Format

Share Document