scholarly journals Reduction of Antibiotic Resistant Bacteria During Conventional and Advanced Wastewater Treatment, and the Disseminated Loads Released to the Environment

2018 ◽  
Vol 9 ◽  
Author(s):  
Thomas Jäger ◽  
Norman Hembach ◽  
Christian Elpers ◽  
Arne Wieland ◽  
Johannes Alexander ◽  
...  
2019 ◽  
Vol 20 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Damiana Ravasi ◽  
Roger König ◽  
Pamela Principi ◽  
Giuseppe Perale ◽  
Antonella Demarta

Background: Conventional wastewater treatment plants discharge significant amounts of antibiotic resistant bacteria and antibiotic resistance genes into natural water bodies contributing to the spread of antibiotic resistance. Some advanced wastewater treatment technologies have been shown to effectively decrease the number of bacteria. Nevertheless, there is still a lack of knowledge about the effectiveness of these treatments on antibiotic resistant bacteria and antibiotic resistant genes. To the best of our knowledge, no specific studies have considered how powdered activated carbon (PAC) treatments can act on antibiotic resistant bacteria, although it is essential to assess the impact of this wastewater treatment on the spread of antibiotic resistant bacteria. </P><P> Methods: To address this gap, we evaluated the fate and the distribution of fluorescent-tagged antibiotic/ antimycotic resistant microorganisms in a laboratory-scale model simulating a process configuration involving powdered activated carbon as advanced wastewater treatment. Furthermore, we studied the possible increase of naturally existing antibiotic resistant bacteria during the treatment implementing PAC recycling. Results: The analysis of fluorescent-tagged microorganisms demonstrated the efficacy of the PAC adsorption treatment in reducing the load of both susceptible and resistant fluorescent microorganisms in the treated water, reaching a removal efficiency of 99.70%. Moreover, PAC recycling did not increase the resistance characteristics of cultivable bacteria neither in the sludge nor in the treated effluent. Conclusion: Results suggest that wastewater PAC treatment is a promising technology not only for the removal of micropollutants but also for its effect in decreasing antibiotic resistant bacteria release.


Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


2020 ◽  
Author(s):  
Sudipti Arora ◽  
Sakshi Saraswat ◽  
Ankur Rajpal ◽  
Harshita Shringi ◽  
Rinki Mishra ◽  
...  

AbstractThe wastewater treatment plants effluent has been implicated in the spread of antibiotic resistant bacteria (ARB) as these environment contains multiple selective pressures that may increase mutation rates, pathogen survivability, and induce gene transfer between bacteria. In lieu of this, the present study explored the dynamics of earthworm-microorganisms interactions on the treatment efficacy of clinical laboratory wastewater treatment by vermifiltration and the effect of earthworms in the fate of removal of pathogens and ARB. The results of the study showed that earthworms and VF associated microbial community had a significant effect on BOD and COD reduction (78-85%), pathogen removal (>99.9 %) and caused a significant shift in the prevalence pattern of ARB. Additionally, molecular profiling of ESBL (blaSHV, blaTEM and blaCTX-M), MRSA (mec-A) and Colistin (mcr-1) gene confirmed the probable mechanisms behind the resistance pattern. The microbial community diversity assists in the formation of biofilm, which helps in the removal of pathogens and results in a paradigm shift in the resistance profile of ARB and ARG, specifically most effective against drugs, targeting cell wall and protein synthesis inhibition like Ampicillin, Ticarcillin, Gentamicin and Chloramphenicol. These findings prove vermifiltration technology as a sustainable and natural treatment technology for clinical laboratory wastewater.


2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


2019 ◽  
Vol 100 ◽  
pp. 00061 ◽  
Author(s):  
Adriana Osińska ◽  
Ewa Korzeniewska ◽  
Monika Harnisz ◽  
Sebastian Niestępski ◽  
Piotr Jachimowicz

Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB) which are transported to the natural environment with discharged effluents. Samples of untreated wastewater (UWW) and treated wastewater (TWW) from four municipal WWTPs and samples of river water collected upstream (URW) and downstream (DRW) from the effluent discharge point were analyzed in the study. The total counts of bacteria resistant to β-lactams and tetracyclines and the counts of antibiotic-resistant Escherichia coli were determined. Antibiotic-resistant bacteria, including antibiotic-resistant E. coli, were removed with up to 99.9% efficiency in the evaluated WWTPs. Despite the above, ARB counts in TWW samples were high at up to 1.25x105 CFU/mL in winter and 1.25x103 CFU/mL in summer. Antibiotic-resistant bacteria were also abundant (up to 103 CFU/ml) in URW and DRW samples collected in winter and summer. In both UWW and TWW samples, the counts of ARB and antibiotic-resistant E. coli were at least one order of magnitude lower in summer than in winter. The study revealed that despite the high efficiency of bacterial removal in the wastewater treatment processes, considerable amounts of ARB are released into the environment with TWW and that the percentage of ARB in total bacterial counts increases after wastewater treatment.


2019 ◽  
Author(s):  
Cian Smyth ◽  
Aidan O’Flaherty ◽  
Fiona Walsh ◽  
Thi Thuy Do

AbstractWastewater treatment plants (WWTPs) provide optimal conditions for the maintenance and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this work we describe the occurrence of antibiotic resistant faecal coliforms and their mechanisms of antibiotic resistance in the effluent of two urban WWTPs in Ireland. Effluent samples were collected from two WWTPs in Spring and Autumn of 2015 and 2016. The bacterial susceptibility patterns to 13 antibiotics were determined. The phenotypic tests were carried out to identify AmpC or extended-spectrum β-lactamase (ESBL) producers. The presence of ESBL genes were detected by PCR. Plasmids carrying ESBL genes were transformed into Escherichia coli DH5α recipient and underwent plasmid replicon typing to identify incompatibility groups. More than 90% of isolated faecal coliforms were resistant to amoxicillin and ampicillin, followed by tetracycline (up to 39.82%), ciprofloxacin (up to 31.42%) and trimethoprim (up to 37.61%). Faecal coliforms resistant to colistin and imipenem were detected in all effluent samples. Up to 53.98% of isolated faecal coliforms expressed a multi-drug resistance (MRD) phenotype. AmpC production was confirmed in 5.22% of isolates. The ESBL genes were confirmed for 11.84% of isolates (9.2% of isolates carried blaTEM, 1.4% blaSHV-12, 0.2% blaCTX-M-1 and 1% blaCTX-M-15). Plasmids extracted from 52 ESBL isolates were successfully transformed into recipient E. coli. The detected plasmid incompatibility groups included the IncF group, IncI1, IncHI1/2 and IncA/C. These results provide evidence that treated wastewater is polluted with ARB and MDR faecal coliforms and are sources of ESBL-producing, carbapenem and colistin resistant Enterobacteriaceae.ImportanceAntibiotic resistant bacteria (ARB) are an emerging environmental concern with a potential impact on human health. The results provide the evidence that treated wastewater is polluted with antibiotic resistant bacteria containing mobile resistance mechanisms of importance to clinical treatment of pathogens and multi-drug resistant (MDR) faecal coliforms. They are sources of relatively high proportions of ESBL-producing Enterobacteriaceae, and include carbapenem and colistin resistant Enterobacteriaceae. The significance of this study is the identification of the role of WWTPs as a potential control point to reduce or stop the movement of ESBL, MDR and colistin resistant bacteria into the environment from further upstream sources, such as human or animal waste.


Sign in / Sign up

Export Citation Format

Share Document