scholarly journals Catch Crop Residues Stimulate N2O Emissions During Spring, Without Affecting the Genetic Potential for Nitrite and N2O Reduction

2018 ◽  
Vol 9 ◽  
Author(s):  
Yun-Feng Duan ◽  
Sara Hallin ◽  
Christopher M. Jones ◽  
Anders Priemé ◽  
Rodrigo Labouriau ◽  
...  
Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 546
Author(s):  
Lisa Essich ◽  
Peteh Mehdi Nkebiwe ◽  
Moritz Schneider ◽  
Reiner Ruser

In order to quantify the reduction potential for nitrous oxide (N2O) release from arable soils through the removal of crop residues, we conducted an experiment after sugar beet (Beta vulgaris L.) harvest with three treatments: (i) ploughing of the crop residues (+CR:D), (ii) returning residues after ploughing on the surface (+CR:S), and (iii) removal of the residues and ploughing (−CR). N2O fluxes were measured over 120 days in south Germany. High positive correlations between N2O fluxes and the CO2 fluxes and soil nitrate contents suggested denitrification as the main N2O source. N2O emissions in +CR:D was higher than in +CR:S (2.39 versus 0.93 kg N2O−N ha−1 120 d−1 in +CR:D and +CR:S). Residue removal in −CR reduced the N2O emission compared to +CR:D by 95% and to +CR:S by 87%. We further conducted a meta-analysis on the effect of crop residue removal on N2O emissions, where we included 176 datasets from arable soils with mainly rain fed crops. The overall effect of residue removal showed a N2O reduction of 11%. The highest N2O reduction of 76% was calculated for the removal subgroup with C/N-ratio < 25. Neither the remaining C/N-ratio subgroups nor the grouping variables “tillage” or “residue quantity” differed within their subgroup.


Author(s):  
Diego Abalos ◽  
Tatiana F. Rittl ◽  
Sylvie Recous ◽  
Pascal Thiébeau ◽  
Cairistiona F.E. Topp ◽  
...  

Author(s):  
Gwenaëlle Lashermes ◽  
Sylvie Recous ◽  
Gonzague Alavoine ◽  
Baldur Janz ◽  
Klaus Butterbach-Bahl ◽  
...  

2019 ◽  
Vol 16 (16) ◽  
pp. 3247-3266 ◽  
Author(s):  
Erkan Ibraim ◽  
Benjamin Wolf ◽  
Eliza Harris ◽  
Rainer Gasche ◽  
Jing Wei ◽  
...  

Abstract. Nitrous oxide (N2O) is the primary atmospheric constituent involved in stratospheric ozone depletion and contributes strongly to changes in the climate system through a positive radiative forcing mechanism. The atmospheric abundance of N2O has increased from 270 ppb (parts per billion, 10−9 mole mole−1) during the pre-industrial era to approx. 330 ppb in 2018. Even though it is well known that microbial processes in agricultural and natural soils are the major N2O source, the contribution of specific soil processes is still uncertain. The relative abundance of N2O isotopocules (14N14N16N, 14N15N16O, 15N14N16O, and 14N14N18O) carries process-specific information and thus can be used to trace production and consumption pathways. While isotope ratio mass spectroscopy (IRMS) was traditionally used for high-precision measurement of the isotopic composition of N2O, quantum cascade laser absorption spectroscopy (QCLAS) has been put forward as a complementary technique with the potential for on-site analysis. In recent years, pre-concentration combined with QCLAS has been presented as a technique to resolve subtle changes in ambient N2O isotopic composition. From the end of May until the beginning of August 2016, we investigated N2O emissions from an intensively managed grassland at the study site Fendt in southern Germany. In total, 612 measurements of ambient N2O were taken by combining pre-concentration with QCLAS analyses, yielding δ15Nα, δ15Nβ, δ18O, and N2O concentration with a temporal resolution of approximately 1 h and precisions of 0.46 ‰, 0.36 ‰, 0.59 ‰, and 1.24 ppb, respectively. Soil δ15N-NO3- values and concentrations of NO3- and NH4+ were measured to further constrain possible N2O-emitting source processes. Furthermore, the concentration footprint area of measured N2O was determined with a Lagrangian particle dispersion model (FLEXPART-COSMO) using local wind and turbulence observations. These simulations indicated that night-time concentration observations were largely sensitive to local fluxes. While bacterial denitrification and nitrifier denitrification were identified as the primary N2O-emitting processes, N2O reduction to N2 largely dictated the isotopic composition of measured N2O. Fungal denitrification and nitrification-derived N2O accounted for 34 %–42 % of total N2O emissions and had a clear effect on the measured isotopic source signatures. This study presents the suitability of on-site N2O isotopocule analysis for disentangling source and sink processes in situ and found that at the Fendt site bacterial denitrification or nitrifier denitrification is the major source for N2O, while N2O reduction acted as a major sink for soil-produced N2O.


2019 ◽  
Vol 16 (2) ◽  
pp. 383-408 ◽  
Author(s):  
Elizabeth Verhoeven ◽  
Matti Barthel ◽  
Longfei Yu ◽  
Luisella Celi ◽  
Daniel Said-Pullicino ◽  
...  

Abstract. Soil moisture strongly affects the balance between nitrification, denitrification and N2O reduction and therefore the nitrogen (N) efficiency and N losses in agricultural systems. In rice systems, there is a need to improve alternative water management practices, which are designed to save water and reduce methane emissions but may increase N2O and decrease nitrogen use efficiency. In a field experiment with three water management treatments, we measured N2O isotope ratios of emitted and pore air N2O (δ15N, δ18O and site preference, SP) over the course of 6 weeks in the early rice growing season. Isotope ratio measurements were coupled with simultaneous measurements of pore water NO3-, NH4+, dissolved organic carbon (DOC), water-filled pore space (WFPS) and soil redox potential (Eh) at three soil depths. We then used the relationship between SP × δ18O-N2O and SP × δ15N-N2O in simple two end-member mixing models to evaluate the contribution of nitrification, denitrification and fungal denitrification to total N2O emissions and to estimate N2O reduction rates. N2O emissions were higher in a dry-seeded + alternate wetting and drying (DS-AWD) treatment relative to water-seeded + alternate wetting and drying (WS-AWD) and water-seeded + conventional flooding (WS-FLD) treatments. In the DS-AWD treatment the highest emissions were associated with a high contribution from denitrification and a decrease in N2O reduction, while in the WS treatments, the highest emissions occurred when contributions from denitrification/nitrifier denitrification and nitrification/fungal denitrification were more equal. Modeled denitrification rates appeared to be tightly linked to nitrification and NO3- availability in all treatments; thus, water management affected the rate of denitrification and N2O reduction by controlling the substrate availability for each process (NO3- and N2O), likely through changes in mineralization and nitrification rates. Our model estimates of mean N2O reduction rates match well those observed in 15N fertilizer labeling studies in rice systems and show promise for the use of dual isotope ratio mixing models to estimate N2 losses.


Geobiology ◽  
2011 ◽  
Vol 9 (3) ◽  
pp. 294-300 ◽  
Author(s):  
R. N. VAN DEN HEUVEL ◽  
S. E. BAKKER ◽  
M. S. M. JETTEN ◽  
M. M. HEFTING

SOIL ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 399-412
Author(s):  
Kate M. Buckeridge ◽  
Kate A. Edwards ◽  
Kyungjin Min ◽  
Susan E. Ziegler ◽  
Sharon A. Billings

Abstract. Production and reduction of nitrous oxide (N2O) by soil denitrifiers influence atmospheric concentrations of this potent greenhouse gas. Accurate projections of the net N2O flux have three key uncertainties: (1) short- vs. long-term responses to warming, (2) interactions among soil horizons, and (3) temperature responses of different steps in the denitrification pathway. We addressed these uncertainties by sampling soil from a boreal forest climate transect encompassing a 5.2 ∘C difference in the mean annual temperature and incubating the soil horizons in isolation and together at three ecologically relevant temperatures in conditions that promote denitrification. Both short-term exposure to warmer temperatures and long-term exposure to a warmer climate increased N2O emissions from organic and mineral soils; an isotopic tracer suggested that an increase in N2O production was more important than a decline in N2O reduction. Short-term warming promoted the reduction of organic horizon-derived N2O by mineral soil when these horizons were incubated together. The abundance of nirS (a precursor gene for N2O production) was not sensitive to temperature, whereas that of nosZ clade I (a gene for N2O reduction) decreased with short-term warming in both horizons and was higher from a warmer climate. These results suggest a decoupling of gene abundance and process rates in these soils that differs across horizons and timescales. In spite of these variations, our results suggest a consistent, positive response of denitrifier-mediated net N2O efflux rates to temperature across timescales in these boreal forests. Our work also highlights the importance of understanding cross-horizon N2O fluxes for developing a predictive understanding of net N2O efflux from soils.


Sign in / Sign up

Export Citation Format

Share Document