scholarly journals Microbiota Composition and Evenness Predict Survival Rate of Oysters Confronted to Pacific Oyster Mortality Syndrome

2020 ◽  
Vol 11 ◽  
Author(s):  
Camille Clerissi ◽  
Julien de Lorgeril ◽  
Bruno Petton ◽  
Aude Lucasson ◽  
Jean-Michel Escoubas ◽  
...  
2018 ◽  
Author(s):  
Camille Clerissi ◽  
Julien de Lorgeril ◽  
Bruno Petton ◽  
Aude Lucasson ◽  
Jean-Michel Escoubas ◽  
...  

AbstractPacific Oyster Mortality Syndrome (POMS) affects Crassostrea gigas oysters worldwide and caused important economic losses. Disease dynamics was recently deciphered and revealed a multiple and progressive infection caused by the Ostreid herpesvirus OsHV-1 µVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to oyster protection to POMS, and if microbiota characteristics might be predictive of oyster mortalities. To tackle this issue, we transferred full-sib progenies of resistant and susceptible oyster families from hatchery to the field during a period in favour of POMS. After five days of transplantation, oysters from each family were either sampled for individual microbiota analyses using 16S rRNA gene-metabarcoding or transferred into facilities to record their survival using controlled condition. As expected, all oysters from susceptible families died, and all oysters from the resistant family survived. Quantification of OsHV-1 and bacteria showed that five days of transplantation was long enough to contaminate oysters by POMS, but not for entering the pathogenesis process. Thus, it was possible to compare microbiota characteristics between resistant and susceptible oyster families at the early steps of infection. Strikingly, we found that microbiota evenness and abundances of Cyanobacteria (Subsection III, family I), Mycoplasmataceae, Rhodobacteraceae, and Rhodospirillaceae were significantly different between resistant and susceptible oyster families. We concluded that these microbiota characteristics might predict oyster mortalities.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jean Delmotte ◽  
Cristian Chaparro ◽  
Richard Galinier ◽  
Julien de Lorgeril ◽  
Bruno Petton ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Julien de Lorgeril ◽  
Bruno Petton ◽  
Aude Lucasson ◽  
Valérie Perez ◽  
Pierre-Louis Stenger ◽  
...  

2020 ◽  
Author(s):  
de Lorgeril Julien ◽  
Bruno Petton ◽  
Aude Lucasson ◽  
Valérie Perez ◽  
Pierre-Louis Stenger ◽  
...  

Abstract Background: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). Results: We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. Conclusions: We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.


2016 ◽  
Vol 37 (3) ◽  
pp. 126 ◽  
Author(s):  
Richard Whittington ◽  
Paul Hick ◽  
Olivia Evans ◽  
Ana Rubio ◽  
Navneet Dhand ◽  
...  

Genotypes of Ostreid herpesvirus 1 (OsHV-1) known as microvariants cause the disease Pacific oyster mortality syndrome (POMS). Since its appearance in NSW in 2010, OsHV-1 microvariant has prevented the farming of Pacific oysters (Crassostrea gigas) in the affected estuaries near Sydney, following the initial massive outbreaks1,2. The arrival of the disease in southeast Tasmania in January 2016 has put the entire $53M industry in Australia in jeopardy3. The virus is a member of the Family Malacoherpesviridae4, which includes several invertebrate herpesviruses. The OsHV-1 genome consists of 207 439 base pairs, with organisation similar to that of mammalian herpesviruses. However, OsHV-1 contains two invertible unique regions (UL, 167.8 kbp; US, 3.4 kbp) each flanked by inverted repeats (TRL/IRL, 7.6 kbp; TRS/IRS, 9.8 kbp), with an additional unique sequence (X, 1.5 kbp) between IRL and IRS4. Unlike many herpesviruses which are host specific, OsHV-1 strains have been transmitted between marine bivalve species5 and the virus is transmitted indirectly. The virus may have relatively prolonged survival in the environment, has extremely high infection and case fatality rates, and latency is unproven. Along with pilchard herpesvirus6–8 and abalone ganglioneuritis virus9,10, it is part of a dawning reality that marine herpesviruses are among the most virulent of pathogens. Finding solutions for industry requires more than laboratory-based research.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 492 ◽  
Author(s):  
Daniela Mandas ◽  
Fulvio Salati ◽  
Marta Polinas ◽  
Marina Antonella Sanna ◽  
Rosanna Zobba ◽  
...  

Consumer preference for healthy and sustainable food products has been steadily increasing in recent years. Bivalve mollusks satisfy these characteristics and have captured ever-increasing market shares. However, the expansion of molluscan culture in worldwide and global trade have favored the spread of pathogens around the world. Combined with environmental changes and intensive production systems this has contributed to the occurrence of mass mortality episodes, thus posing a threat to the production of different species, including the Pacific oyster Crassotrea gigas. In the San Teodoro lagoon, one of the most devoted lagoons to extensive Pacific oyster aquaculture in Sardinia, a mortality outbreak was observed with an estimated 80% final loss of animal production. A study combining cultural, biomolecular and histopathological methods was conducted: (1) to investigate the presence of different Vibrio species and OsHV-1 in selected oyster tissues (digestive gland, gills, and mantle); (2) to quantify Vibrio aestuarianus and to evaluate the severity of hemocyte infiltration in infected tissues; (3) to produce post-amplification data and evaluating ToxR gene as a target for phylogenetic analyses. Results provide new insights into V. aestuarianus infection related to oyster mortality outbreaks and pave the way to the development of tools for oyster management.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Letícia Leandro Batista ◽  
Serena Mares Malta ◽  
Heitor Cappato Guerra Silva ◽  
Luiza Diniz Ferreira Borges ◽  
Lays Oliveira Rocha ◽  
...  

AbstractAlzheimer’s Disease (AD) is the most common cause of dementia among elderly individuals worldwide, leading to a strong motor-cognitive decline and consequent emotional distress and codependence. It is traditionally characterized by amyloidogenic pathway formation of senile plaques, and recent studies indicate that dysbiosis is also an important factor in AD’s pathology. To overcome dysbiosis, probiotics—as kefir—have shown to be a great therapeutic alternative for Alzheimer’s disease. In this present work, we explored kefir as a probiotic and a metabolite source as a modulator of microbiome and amyloidogenic pathway, using a Drosophila melanogaster model for AD (AD-like flies). Kefir microbiota composition was determined through 16S rRNA sequencing, and the metabolome of each fraction (hexane, dichloromethane, ethyl acetate, and n-butanol) was investigated. After treatment, flies had their survival, climbing ability, and vacuolar lesions accessed. Kefir and fraction treated flies improved their climbing ability survival rate and neurodegeneration index. In conclusion, we show that kefir in natura, as well as its fractions may be promising therapeutic source against AD, modulating amyloidogenic related pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bruno Petton ◽  
Delphine Destoumieux-Garzón ◽  
Fabrice Pernet ◽  
Eve Toulza ◽  
Julien de Lorgeril ◽  
...  

The Pacific oyster (Crassostreae gigas) has been introduced from Asia to numerous countries around the world during the 20th century. C. gigas is the main oyster species farmed worldwide and represents more than 98% of oyster production. The severity of disease outbreaks that affect C. gigas, which primarily impact juvenile oysters, has increased dramatically since 2008. The most prevalent disease, Pacific oyster mortality syndrome (POMS), has become panzootic and represents a threat to the oyster industry. Recently, major steps towards understanding POMS have been achieved through integrative molecular approaches. These studies demonstrated that infection by Ostreid herpesvirus type 1 µVar (OsHV-1 µvar) is the first critical step in the infectious process and leads to an immunocompromised state by altering hemocyte physiology. This is followed by dysbiosis of the microbiota, which leads to a secondary colonization by opportunistic bacterial pathogens, which in turn results in oyster death. Host and environmental factors (e.g. oyster genetics and age, temperature, food availability, and microbiota) have been shown to influence POMS permissiveness. However, we still do not understand the mechanisms by which these different factors control disease expression. The present review discusses current knowledge of this polymicrobial and multifactorial disease process and explores the research avenues that must be investigated to fully elucidate the complexity of POMS. These discoveries will help in decision-making and will facilitate the development of tools and applied innovations for the sustainable and integrated management of oyster aquaculture.


2019 ◽  
Author(s):  
de Lorgeril Julien ◽  
Bruno Petton ◽  
Aude Lucasson ◽  
Valérie Perez ◽  
Pierre-Louis Stenger ◽  
...  

Abstract Background As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible).Results We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype.Conclusions We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.


Sign in / Sign up

Export Citation Format

Share Document