scholarly journals High-Fat Diets Led to OTU-Level Shifts in Fecal Samples of Healthy Adult Dogs

2020 ◽  
Vol 11 ◽  
Author(s):  
Logan R. Kilburn ◽  
Lucas R. Koester ◽  
Stephan Schmitz-Esser ◽  
Nick V. L. Serão ◽  
Mariana C. Rossoni Serão

High fat diets have been reported to negatively affect the microbiota in both mice and humans. However, there is a lack of studies in canine models. The variation among the gastrointestinal (GI) tract anatomy/physiology and typical diet compositions of these animal species may lead to vastly different results. Due to the large inclusion rate of dietary fat in pet food, it is critical to understand its effects in a canine model. Therefore, the study objective was to report the effects of high fat, low carbohydrate diets on the fecal microbiota in healthy adult dogs. Eight adult beagles were randomly assigned to one of four dietary treatments within each 15-day period of a replicated 4x4 Latin Square design. Diets contained 32% (T1), 37% (T2), 42% (T3), and 47% (T4) fat. T2, T3, and T4 were created by adding increasing levels of canola oil to T1, a commercially manufactured canned canine diet, which served as the control diet. Fresh fecal samples were collected during the last 5 days of each period for microbial analysis. DNA was extracted from fecal samples and paired-end 16S rRNA gene amplicon sequencing was performed using the Illumina MiSeq platform. When comparing whole microbial communities using PERMANOVA, no significant differences were observed among treatments (P = 0.735). Individual OTUs were analyzed using the GLIMMIX procedure of SAS with fixed effects of diet and room, and the random effects of period and animal. Out of the 100 most abundant individual OTUs, 36 showed significant differences in abundance based on treatment (q < 0.05). Overall, OTUs assigned to genera related to fat digestion increased while OTUs assigned to genera involved in carbohydrate digestion decreased. In conclusion, the microbial community adapted to dietary intervention without jeopardizing the health of the animals, evaluated by body condition score, fecal characteristics, and blood parameters.

2020 ◽  
pp. 1-29 ◽  
Author(s):  
Siofra E. Maher ◽  
Eileen C. O’Brien ◽  
Rebecca L. Moore ◽  
David F. Byrne ◽  
Aisling A. Geraghty ◽  
...  

Abstract During pregnancy, changes occur to influence the maternal gut microbiome, and potentially the fetal microbiome. Diet has been shown to impact the gut microbiome. Little research has been conducted examining diet during pregnancy with respect to the gut microbiome. To meet inclusion criteria, dietary analyses must have been conducted as part of the primary aim. The primary outcome was the composition of the gut microbiome (infant or maternal), as assessed using culture-independent sequencing techniques. This review identified seven studies for inclusion, five examining the maternal gut microbiome and two examining the fetal gut microbiome. Microbial data were attained through analysis of stool samples by 16S rRNA gene-based microbiota assessment. Studies found an association between the maternal diet and gut microbiome. High-fat diets (% fat of total energy), fat-soluble vitamins (mg/day) and fibre (g/day) were the most significant nutrients associated with the gut microbiota composition of both neonates and mothers. High-fat diets were significantly associated with a reduction in microbial diversity. High-fat diets may reduce microbial diversity, while fibre intake may be positively associated with microbial diversity. The results of this review must be interpreted with caution. The number of studies was low, and the risk of observational bias and heterogeneity across the studies must be considered. However, these results show promise for dietary intervention and microbial manipulation in order to favour an increase of health-associated taxa in the gut of the mother and her offspring.


2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Logan R Kilburn ◽  
Karin Allenspach ◽  
Albert E Jergens ◽  
Agnes Bourgois-Mochel ◽  
Jonathan P Mochel ◽  
...  

Abstract Pet foods may be formulated with decreased starch to meet consumer demands for less processed diets. Fats and oils may be added to low-starch diets to meet energy requirements, but little is known about its effects on canine health. The study objective was to evaluate the effects of feeding healthy adult dogs low carbohydrate, high-fat diets on apparent total tract digestibility, fecal characteristics, and overall health status. Eight adult Beagles were enrolled in a replicated 4 × 4 Latin Square design feeding trial. Dogs were randomly assigned to one of four dietary fat level treatments (T) within each period: 32% (T1), 37% (T2), 42% (T3), and 47% (T4) fat on a dry matter basis. Fat levels were adjusted with the inclusion of canola oil added to a commercial diet. Each dog was fed to exceed its energy requirement based on NRC (2006). Blood samples were analyzed for complete blood counts, chemistry profiles, and canine pancreatic lipase immunoreactivity levels. Apparent total tract digestibility improved (P < 0.05) as the fat level increased for dry matter, organic matter, fat, and gross energy. Fecal output decreased as levels of fat increased in the diet (P = 0.002). There was no effect of fat level on stool quality or short-chain fatty acid and ammonia concentrations in fecal samples (P ≥ 0.20). Blood urea nitrogen levels decreased with increased fat level (P = 0.035). No significant differences were seen in canine pancreatic lipase immunoreactivity (P = 0.110). All blood parameters remained within normal reference intervals. In summary, increased dietary fat improved apparent total tract digestibility, did not alter fecal characteristics, and maintained the health status of all dogs.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 418 ◽  
Author(s):  
Nijiati Abulizi ◽  
Candice Quin ◽  
Kirsty Brown ◽  
Yee Chan ◽  
Sandeep Gill ◽  
...  

The dynamics of the tripartite relationship between the host, gut bacteria and diet in the gut is relatively unknown. An imbalance between harmful and protective gut bacteria, termed dysbiosis, has been linked to many diseases and has most often been attributed to high-fat dietary intake. However, we recently clarified that the type of fat, not calories, were important in the development of murine colitis. To further understand the host-microbe dynamic in response to dietary lipids, we fed mice isocaloric high-fat diets containing either milk fat, corn oil or olive oil and performed 16S rRNA gene sequencing of the colon microbiome and mass spectrometry-based relative quantification of the colonic metaproteome. The corn oil diet, rich in omega-6 polyunsaturated fatty acids, increased the potential for pathobiont survival and invasion in an inflamed, oxidized and damaged gut while saturated fatty acids promoted compensatory inflammatory responses involved in tissue healing. We conclude that various lipids uniquely alter the host-microbe interaction in the gut. While high-fat consumption has a distinct impact on the gut microbiota, the type of fatty acids alters the relative microbial abundances and predicted functions. These results support that the type of fat are key to understanding the biological effects of high-fat diets on gut health.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Liu ◽  
Hang Zhao ◽  
Linlin Yang ◽  
Xing Wang ◽  
Linquan Yang ◽  
...  

Abstract Background Studies have shown that the high incidence of type 2 diabetes in China is associated with low birth weight and excessive nutrition in adulthood, which occurred during the famine years of the 1950s and 1960s, though the specific molecular mechanisms are unclear. In this study, we proposed a severe maternal caloric restriction during late pregnancy, followed by a post weaning high-fat diet in mice. After weaning, normal and high-fat diets were provided to mice to simulate the dietary pattern of modern society. Methods The pregnant mice were divided into two groups: normal birth weight (NBW) group and low birth weight (LBW) group. After 3 weeks for weaning, the male offspring mice in the NBW and LBW groups were then randomly divided into four subgroups: NC, NH, LC and LC groups. The offspring mice in the NC, NH, LC and LC groups were respectively fed with normal diet, normal diet, high-fat diet and high-fat diet for 18 weeks. After 18 weeks of dietary intervention, detailed analyses of mRNA and protein expression patterns, signaling pathway activities, and promoter methylation states were conducted for all relevant genes. Results After dietary intervention for 18 weeks, the expressions of CD36, Fabp4, PPARγ, FAS, and ACC1 in the skeletal muscle tissue of the LH group were significantly increased compared with the LC and NH groups (P < 0.05). The level of p-AMPK/AMPK in the skeletal muscle tissue of the LH group was significantly decreased compared with the LC and NH groups (P < 0.05). CPT1 and PGC-1α protein expressions were up-regulated in the LH group (P < 0.05) compared to the LC group. Additionally, the DNA methylation levels of the PGC-1α and GLUT4 gene promoters in the skeletal muscle of the LH groups were higher than those of the LC and NH groups (P < 0.05). However, PPARγ DNA methylation level in the LH group was lower than those of the LC and NH groups (P < 0.05). Conclusions LBW combined with high-fat diets may increase insulin resistance and diabetes through regulating the CD36-related Fabp4-PPARγ and AMPK/ACC signaling pathways.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shenli Wang ◽  
Chongye Guo ◽  
Zhikai Xing ◽  
Meng Li ◽  
Haiying Yang ◽  
...  

White kidney beans contain α-amylase inhibitors that can be used in diet for weight reduction. In this study, we investigated the potential of white kidney bean (phaseolus vulgaris L.) extract enriched in α-amylase inhibitor as a food additive in yogurt to regulate blood glucose in hyperglycemic animals. Five groups of C57BL/6J mice were fed for 8 weeks with standard chow diets, high-fat diets (HFD), or high-fat diets with supplement of α-amylase inhibitor in white kidney beans (P. vulgaris extract, PVE), yogurt (Y), and PVE added yogurt (YPVE), respectively. The HFD weakened glucose tolerance and caused insulin resistance in mice, and changed the characteristics of intestinal flora. The intervention of Y, PVE, and YPVE decreased blood glucose, insulin, hyperlipidemia, and inflammatory cytokine levels in mice fed with HFD. Moreover, the YPVE could regulate the components of host intestinal microbiota toward a healthy pattern, significantly increased the metabolic-related flora Corynebacterium, Granulicatella, and Streptococcus, while it decreased Paraprevotella and Allobaculum. Thus, YPVE markedly increased functions of “Amino Acid Metabolism,” “Energy Metabolism,” “Nucleotide Metabolism,” and declined functions of “Glycan Biosynthesis and Metabolism.” Consequently, YPVE could be developed as a new functional food because of its beneficial prebiotic properties in the metabolic syndrome.


1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


Sign in / Sign up

Export Citation Format

Share Document