scholarly journals Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune’s Cup Sponge, Cliona patera

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Yi Ho ◽  
Nursheena Parveen Katermeran ◽  
Lindsey Kane Deignan ◽  
Ma Yadanar Phyo ◽  
Ji Fa Marshall Ong ◽  
...  

Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune’s Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.

2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900
Author(s):  
Gennaro Roberto Abbamondi ◽  
Salvatore De Rosa ◽  
Carmine Iodice ◽  
Giuseppina Tommonaro

Four bacterial strains belonging to the genera Vibrio, Pseudoalteromonas and Photobacterium were isolated from the marine sponges Dysidea avara and Geodia cynodium. A Bacillus strain was isolated from Ircinia variabilis. A screening of molecules involved in quorum sensing (QS) was carried out by TLC-overlay and a new “plate T-streak” test. To analyze quorum quenching (QQ), a plate T-streak was performed with Chromobacterium violaceum. Strains of Vibrio isolated from both marine sponges and a strain of Photobacterium isolated from G. cynodium, activated QS bioreporters. A strain of Pseudoalteromonas isolated from D. avara showed QQ activity. Finally, it is reported that cyclic dipeptides isolated from strains of Vibrio sp. and Bacillus sp. (isolated from D. avara and I. variabilis, respectively) were involved in the QS mechanism. The simultaneous presence of bacteria that showed contrasting responses in bioassays for QS signal molecule synthesis in marine sponges could add an interesting dimension to the signalling interactions which may be happening in sponges.


2020 ◽  
Vol 4 ◽  
Author(s):  
Francis E. Sakai-Kawada ◽  
Courtney G. Ip ◽  
Kehau A. Hagiwara ◽  
Hoang-Yen X. Nguyen ◽  
Christopher-James A. V. Yakym ◽  
...  

Interest in bioactive pigments stems from their ecological role in adaptation, as well as their applications in various consumer products. The production of these bioactive pigments can be from a variety of biological sources, including simple microorganisms that may or may not be associated with a host. This study is particularly interested in the marine sponges, which have been known to harbor microorganisms that produce secondary metabolites like bioactive pigments. In this study, marine sponge tissue samples were collected from Puhi Bay off the Eastern shore of Hilo, Hawai‘i and subsequently were identified as Petrosia sp. with red pigmentation. Using surface sterilization and aseptic plating of sponge tissue samples, sponge-associated microorganisms were isolated. One isolate (PPB1) produced a colony with red pigmentation like that of Petrosia sp., suggesting an integral relationship between this particular isolate and the sponge of interest. 16S characterization and sequencing of PPB1 revealed that it belonged to the Pseudoalteromonas genus. Using various biological assays, both antimicrobial and antioxidant bioactivity was shown in Pseudoalteromonas sp. PPB1 crude extract. To further investigate the genetics of pigment production, a draft genome of PPB1 was sequenced, assembled, and annotated. This revealed a prodiginine biosynthetic pathway and the first cited-incidence of a prodiginine-producing Pseudoalteromonas species isolated from a marine sponge host. Further understanding into the bioactivity and biosynthesis of secondary metabolites like pigmented prodiginine may uncover the complex ecological interactions between host sponge and microorganism.


Author(s):  
Viola Zaki ◽  
Ahmed EL-gamal ◽  
Yasmin Reyad

he present research carried out to study the common bacterial infections in Oreochromis niloticus (Nile tilapia) in Manzala area at Dakahlia governorate and possible antimicrobial agents used for treatment. A total number of 400 fish were randomly collected from Manzala private farms at Dakahlia governorate and subjected to the clinical, bacteriological and histopathological examination. The highest prevalence of bacterial isolates during the whole period of examination of naturally infected O.niloticus was recorded for A.hydrophila (22.66%), followed by V.alginolyticus (19.01%), V.parahemolyticus (13.80%), Streptococcus spp. (12.24%), A.caviae (11.72%), V.cholera (10.16%), A.salmonicida (7.55%), while the lowest prevalence was recorded for Klebsiella oxytoca (2.86%). The seasonal highest total prevalence of bacterial isolates from examined naturally infected O. niloticus was recorded in spring (30.21%), followed by autumn (28.39%), then summer (22.40%) and the lowest prevalence was recorded in winter (19.01%). Histopathological findings of the tissue samples which collected from different organs of naturally infected O.niloticus revealed that spleen show marked hemosiderosis and sever hemorrhage, gills showsever congestion of lamellar capillaries with marked aneurysm, necrosis and hemorrhage of lamellar epithelium and liver show sever hydropic degeneration and necrosis of hepatocytes, Ciprofloxacin was the most effective antibiotic against all isolated bacterial strains


2019 ◽  
Author(s):  
Sampriti Mukherjee ◽  
Matthew Jemielita ◽  
Vasiliki Stergioula ◽  
Mikhail Tikhonov ◽  
Bonnie L. Bassler

ABSTRACTPseudomonas aeruginosa transitions between the free-swimming state and the sessile biofilm mode during its pathogenic lifestyle. We show that quorum sensing represses P. aeruginosa biofilm formation and virulence by activating expression of genes encoding the KinB-AlgB two-component system. Phospho-AlgB represses biofilm and virulence genes, while KinB dephosphorylates, and thereby, inactivates AlgB. We discover that the photoreceptor BphP is the kinase that, in response to light, phosphorylates and activates AlgB. Indeed, exposing P. aeruginosa to light represses biofilm formation and virulence gene expression. To our knowledge, P. aeruginosa was not previously known to detect light. The KinB-AlgB-BphP module is present in all Pseudomonads, and we demonstrate that AlgB is the cognate response regulator for BphP in diverse bacterial phyla. We propose that KinB-AlgB-BphP constitutes a “three-component” system and AlgB is the node at which varied sensory information is integrated. This study sets the stage for light-mediated control of P. aeruginosa infectivity.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 352-352
Author(s):  
Samat Amat ◽  
Devin B Holman ◽  
Kaycie Schmidt ◽  
kacie L L McCarthy ◽  
Sheri T T Dorsam ◽  
...  

Abstract A recent study reported the existence of a diverse microbiota in 5-to-7-month-old calf fetuses, suggesting that colonization of the bovine gut with so-called “pioneer” microbiota may begin during mid-gestation. In the present study, we investigated the microbiota in bovine fetuses at early gestation. Amniotic and allantoic fluids, and intestinal and placental (cotyledon) tissue samples harvested from fetuses (n = 33) on day 83 of gestation were processed for the assessment of fetal microbiota using 16S rRNA gene sequencing. The sequencing results revealed that a diverse and complex microbial community was present in allantoic and amniotic fluids, and fetal intestine and placenta on day 83 of gestation in beef cattle. Microbial community structure was significantly different between allantoic and amniotic fluid, and intestinal and placental microbiota (0.047 ≥ R2 ≥ 0.019, P ≤ 0.031). Allantoic fluid had a greater (P < 0.05) microbial richness (number of OTUs) (122 ± 10) compared to amniotic fluid (84 ± 6), intestine (63 ± 7) and placenta (66 ± 6). Microbial diversity (Shannon index) was similar for the intestinal and placental samples, and both were less diverse compared to the fetal fluid microbiota (P < 0.05). At the phylum level, 39 different archaeal and bacterial phyla were detected across all fetal samples, with Proteobacteria (55%), Firmicutes (16.2%), Actinobacteria (13.6%) and Bacteroidetes (5%) predominating. Among the 20 most relatively abundant bacterial genera, Acidovorax, Acinetobacter, Brucella, Corynebacterium, Enterococcus, Exiguobacterium and Stenotrophomonas differed by fetal sample type (P < 0.05). A total of 55 taxa were shared among the four different microbial communities. qPCR of bacteria in the intestine and placenta samples as well as scanning electron microscopy imaging of fetal fluids provided additional evidence for the presence of a microbiota in these samples. Overall, the results of this study indicate that colonization with pioneer microbiota may occur during early gestation in bovine fetuses.


2004 ◽  
Vol 70 (6) ◽  
pp. 3724-3732 ◽  
Author(s):  
Lars Fieseler ◽  
Matthias Horn ◽  
Michael Wagner ◽  
Ute Hentschel

ABSTRACT Marine sponges (Porifera) harbor large amounts of commensal microbial communities within the sponge mesohyl. We employed 16S rRNA gene library construction using specific PCR primers to provide insights into the phylogenetic identity of an abundant sponge-associated bacterium that is morphologically characterized by the presence of a membrane-bound nucleoid. In this study, we report the presence of a previously unrecognized evolutionary lineage branching deeply in the domain Bacteria that is moderately related to the Planctomycetes, Verrucomicrobia, and Chlamydia lines of decent. Because members of this lineage showed <75% 16S rRNA gene sequence similarity to known bacterial phyla, we suggest the status of a new candidate phylum, named “Poribacteria”, to acknowledge the affiliation of the new bacterium with sponges. The affiliation of the morphologically conspicuous sponge bacterium with the novel phylogenetic lineage was confirmed by fluorescence in situ hybridization with newly designed probes targeting different sites of the poribacterial 16S rRNA. Consistent with electron microscopic observations of cell compartmentalization, the fluorescence signals appeared in a ring-shaped manner. PCR screening with “Poribacteria”-specific primers gave positive results for several other sponge species, while samples taken from the environment (seawater, sediments, and a filter-feeding tunicate) were PCR negative. In addition to a report for Planctomycetes, this is the second report of cell compartmentalization, a feature that was considered exclusive to the eukaryotic domain, in prokaryotes.


Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 72 ◽  
Author(s):  
Ji Ong ◽  
Hui Goh ◽  
Swee Lim ◽  
Li Pang ◽  
Joyce Chin ◽  
...  

With 70% of the Earth’s surface covered in water, the marine ecosystem offers immense opportunities for drug discovery and development. Due to the decreasing rate of novel natural product discovery from terrestrial sources in recent years, many researchers are beginning to look seaward for breakthroughs in new therapeutic agents. As part of an ongoing marine drug discovery programme in Singapore, an integrated approach of combining metabolomic and genomic techniques were initiated for uncovering novel anti-quorum sensing molecules from bacteria associated with subtidal samples collected in the Singapore Strait. Based on the culture-dependent method, a total of 102 marine bacteria strains were isolated and the identities of selected strains were established based on their 16S rRNA gene sequences. About 5% of the marine bacterial organic extracts showed quorum sensing inhibitory (QSI) activity in a dose-dependent manner based on the Pseudomonas aeruginosa QS reporter system. In addition, the extracts were subjected to mass spectrometry-based molecular networking and the genome of selected strains were analysed for known as well as new biosynthetic gene clusters. This study revealed that using integrated techniques, coupled with biological assays, can provide an effective and rapid prioritization of marine bacterial strains for downstream large-scale culturing for the purpose of isolation and structural elucidation of novel bioactive compounds.


2008 ◽  
Vol 73 (3) ◽  
pp. 273-275 ◽  
Author(s):  
Laura Steindler ◽  
Giulia Devescovi ◽  
Sujatha Subramoni ◽  
Vittorio Venturi

2016 ◽  
Vol 62 (11) ◽  
pp. 893-903 ◽  
Author(s):  
Siphathele Sibanda ◽  
Jacques Theron ◽  
Divine Y. Shyntum ◽  
Lucy N. Moleleki ◽  
Teresa A. Coutinho

Quorum sensing (QS) plays an important role in the regulation of bacteria–host interactions and ecological fitness in many bacteria. In this study, 2 luxI/R homologs, namely eanI/eanR and rhlI/rhlR, were identified in the genome sequence of Pantoea ananatis LMG 2665T. To determine a role for these luxI/R homologs in pathogenicity and biofilm formation, mutant bacterial strains lacking either eanI/R or rhlI/R and both of these homologs were generated. The results indicated that both the RhlI/R and EanI/R systems are required for pathogenicity and biofilm formation in strain LMG 2665T. This is the first study to characterize the biological significance of the RhlI/R QS system in P. ananatis.


2021 ◽  
Author(s):  
Julie Piron ◽  
Jessica Pastour ◽  
Niklas Tysklind ◽  
Juliette Smith-Ravin ◽  
Fabienne Priam

AbstractMarine sponges are known for their antimicrobial, antifungal, and cytotoxic activity. In this study, the activity of aqueous and ethanoic extracts of 3 sponges from Martinique were tested on 5 bacterial strains: Bascillus cereus (CIP 783), Echerichia coli (CIP 54127), Pseudomonas aeruginosa (CIP A22), Staphylococcus aureus (CIP 67.8) and Staphylococcus saprophyticus (CIP 76125). The antimicrobial activity of Agelas clathrodes, Desmapsamma anchorata, and Verongula rigida, was demonstrated using the disc diffusion method and by determining the minimum inhibitory concentration and the minimum bactericidal concentration. The ethanoic extract of Agelas clathrodes had an inhibitory activity specifically on Staphylococcus aureus and Staphylococcus saprophyticus. No activity was observed for the other extracts. Further chemical analyses will be carried out in order to identify the active molecules of these sponges.


Sign in / Sign up

Export Citation Format

Share Document