Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments

2019 ◽  
Vol 292 ◽  
pp. 118-125 ◽  
Author(s):  
Trond Møretrø ◽  
Helge Fanebust ◽  
Annette Fagerlund ◽  
Solveig Langsrud
2021 ◽  
Vol 12 ◽  
Author(s):  
Lourenço Bonneville ◽  
Vera Maia ◽  
Inês Barroso ◽  
Joaquín V. Martínez-Suárez ◽  
Luisa Brito

The aim of this work was to investigate the effect of dual-species biofilms of Listeria monocytogenes with Lactobacillus plantarum on the anti-Listeria activity of a hydrogen peroxide/peracetic acid based commercial disinfectant (P3, Oxonia) when using conditions approaching the food industry environment. Nine strains of L. monocytogenes, including eight persistent strains collected from the meat industry and one laboratory control strain, were used in mono and in dual-species biofilms with a strain of L. plantarum. Biofilms were produced on stainless steel coupons (SSCs), at 11°C (low temperature) or at 25°C (control temperature), in TSB-YE (control rich medium) or in 1/10 diluted TSB-YE (mimicking the situation of biofilm formation after a deficient industrial cleaning procedure). The biofilm forming ability of the strains was evaluated by enumeration of viable cells, and the antibiofilm activity of P3 was assessed by the log reduction of viable cells on SSC. In both nutrient conditions and at low temperature, there was no significant difference (p > 0.05) between L. monocytogenes biofilm forming ability in mono- and in dual-species biofilms. In dual-species biofilms, L. monocytogenes was the dominant species. However, it was generally more susceptible to the lower concentration of P3 0.5% (v/v) than in pure culture biofilms. The presence of L. plantarum, although without significant interference in the number of viable cells of L. monocytogenes, enhanced the efficacy of the anti-Listeria activity of P3, since dual-species biofilms were easier to control. The results presented here reinforce the importance of the investigation into co-culture biofilms produced in food industry conditions, namely at low temperatures, when susceptibility to sanitizers is being assessed.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2020 ◽  
Author(s):  
Oliver Handorf ◽  
Viktoria Isabella Pauker ◽  
Thomas Weihe ◽  
Uta Schnabel ◽  
Eric Freund ◽  
...  

Abstract Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the treatment of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of plasma-treated water on the vitality and biofilm formation of Listeria monocytogenes, a common food spoilage microorganism. Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100 s, 300 s and 900 s (pretreatment time) and the bacterial biofilm was subsequently exposed to the PTW for 1 min, 3 min and 5 min (posttreatment time) for each pretreatment time separately. Colony-forming units (CFU), metabolic activity, and cell vitality were reduced for 4.7 log10, 47.9%, and 69.5%, respectively. Live/dead staining and fluorescence microscopy showed a positive correlation between treatment and incubation times and reduction in vitality. Atomic force microscopy indicated a change in the plasticity of the bacteria. These results suggest a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.


2010 ◽  
Vol 7 (3) ◽  
pp. 1008-1012
Author(s):  
Farhan Zameer ◽  
Shubha Gopal

The present study aimed to understand the survival strategies adapted byListeria monocytogenesto combat oxidative stress in planktonic and biofilm cells with response to hydrogen peroxide (H2O2). The sensitivity ofL. monocytogenesto H2O2(oxidative stress) was found to vary in growth cycle. Early log phase cells were found to be sensitive to 100 μM H2O2when compared to stationary phase. Biofilm population was found to be resistant to the oxidative stress induced at 4% of H2O2when compared to their planktonic counterpart at 3.5%. This adaptive behavior allows the pathogen to overcome food preservation and safety barriers, which pose a potential risk to human health. The overall results suggest that, H2O2at a concentration of 6% could be used as a potent sanitizer for the elimination of listerial biofilms.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Marina Ceruso ◽  
Jason A. Clement ◽  
Matthew J. Todd ◽  
Fangyuan Zhang ◽  
Zuyi Huang ◽  
...  

Listeria monocytogenes is a foodborne pathogen responsible for about 1600 illnesses each year in the United States (US) and about 2500 confirmed invasive human cases in European Union (EU) countries. Several technologies and antimicrobials are applied to control the presence of L. monocytogenes in food. Among these, the use of natural antimicrobials is preferred by consumers. This is due to their ability to inhibit the growth of foodborne pathogens but not prompt negative safety concerns. Among natural antimicrobials, plant extracts are used to inactivate L. monocytogenes. However, there is a large amount of these types of extracts, and their active compounds remain unexplored. The aim of this study was to evaluate the antibacterial activity against L. monocytogenes of about 800 plant extracts derived from plants native to different countries worldwide. The minimal inhibitory concentrations (MICs) were determined, and scanning electron microscopy (SEM) was used to verify how the plant extracts affected L. monocytogenes at the microscopic level. Results showed that 12 of the plant extracts had inhibitory activity against L. monocytogenes. Future applications of this study could include the use of these plant extracts as new preservatives to reduce the risk of growth of pathogens and contamination in the food industry from L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document