scholarly journals The Composition of Root-Associated Bacteria and Fungi of Astragalus mongholicus and Their Relationship With the Bioactive Ingredients

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanmei Li ◽  
Yang Liu ◽  
Hui Zhang ◽  
Yan Yang ◽  
Gehong Wei ◽  
...  

Astragalus membranaceus (Fisch.) Bge. var. mongholicus, which is used in traditional Chinese medicine, contains several bioactive ingredients. The root-associated microbial communities play a crucial role in the production of secondary metabolites in plants. However, the correlation of root-associated bacteria and fungi with the bioactive ingredients production in A. mongholicus has not been elucidated. This study aimed to examine the changes in soil properties, root bioactive ingredients, and microbial communities in different cultivation years. The root-associated bacterial and fungal composition was analyzed using high-throughput sequencing. The correlation between root-associated bacteria and fungi, soil properties, and six major bioactive ingredients were examined using multivariate correlation analysis. Results showed that soil properties and bioactive ingredients were distinct across different cultivation years. The composition of the rhizosphere microbiome was different from that of the root endosphere microbiome. The bacterial community structure was affected by the cultivation year and exhibited a time-decay pattern. Soil properties affected the fungal community composition. It was found that 18 root-associated bacterial operational taxonomic units (OTUs) and four fungal OTUs were positively and negatively correlated with bioactive ingredient content, respectively. The abundance of Stenotrophomonas in the rhizosphere was positively correlated with astragaloside content. Phyllobacterium and Inquilinus in the endosphere were positively correlated with the calycosin content. In summary, this study provided a new opportunity and theoretical reference for improving the production and quality of in A. mongholicus, which thus increase the pharmacological value of A. mongholicus.

Soil Research ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 35
Author(s):  
Lin Gao ◽  
Rui Wang ◽  
Jiaming Gao ◽  
Fangming Li ◽  
Guanghua Huang ◽  
...  

To clarify the differences between microbial communities resident in disease suppressive soil (DSS) and disease conducive soil (DCS) in tobacco cultivation, representative soil samples were collected from tobacco plantations in Shengjiaba, China, and the structure and diversity of the resident bacterial and fungal communities were analysed using high-throughput sequencing technology. Our results showed a greater number of operational taxonomic units associated with bacteria and fungi in DSS than in DCS. At the phylum level, abundances of Chloroflexi, Saccharibacteria, Firmicutes, and Planctomycetes in DSS were lower than in DCS, but abundance of Gemmatimonadetes was significantly higher. Abundances of Zygomycota and Chytridiomycota were higher in DSS than DCS, but abundance of Rozellomycota was significantly lower. At the genus level, abundances of 18 bacterial and nine fungal genera varied significantly between DSS and DCS. Relative abundances of Acidothermus, Microbacterium, Curtobacterium, and Colletotrichum were higher in DCS than DSS. The Shannon and Chao1 indices of DSS microbial communities were higher than those of DCS communities. High microbial diversity reduces the incidence of soil-borne diseases in tobacco plantations and promotes the formation of DSSs.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 241-252
Author(s):  
Dyah Asri Handayani Taroepratjeka ◽  
Tsuyoshi Imai ◽  
Prapaipid Chairattanamanokorn ◽  
Alissara Reungsang

Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized, extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon, Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities, strategies can be developed to increase biohydrogen molar yield.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9376
Author(s):  
Huanhuan Gao ◽  
Xiangtian Yin ◽  
Xilong Jiang ◽  
Hongmei Shi ◽  
Yang Yang ◽  
...  

As a polymicrobial disease, sour rot decreases grape berry yield and wine quality. The diversity of microbial communities in sour rot-affected grapes depends on the cultivation site, but the microbes responsible for this disease in eastern coastal China, has not been reported. To identify the microbes that cause sour grape rot in this important grape-producing region, the diversity and abundance of bacteria and fungi were assessed by metagenomic analysis and cultivation-dependent techniques. A total of 15 bacteria and 10 fungi were isolated from sour rot-affected grapes. High-throughput sequencing of PCR-amplicons generated from diseased grapes revealed 1343 OTUs of bacteria and 1038 OTUs of fungi. Proteobacteria and Firmicutes were dominant phyla among the 19 bacterial phyla identified. Ascomycota was the dominant fungal phylum and the fungi Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa represented the vast majority ofmicrobial species associated with sour rot-affected grapes. An in vitro spoilage assay confirmed that four of the isolated bacteria strains (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) and five of the isolated fungi strains (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum) spoiled grapes. These microorganisms, which appear responsible for spoiling grapes in eastern China, appear closely related to microbes that cause this plant disease around the world.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Jonathan R Gaiero ◽  
Micaela Tosi ◽  
Elizabeth Bent ◽  
Gustavo Boitt ◽  
Kamini Khosla ◽  
...  

ABSTRACT The Haast chronosequence in New Zealand is an ∼6500-year dune formation series, characterized by rapid podzol development, phosphorus (P) depletion and a decline in aboveground biomass. We examined bacterial and fungal community composition within mineral soil fractions using amplicon-based high-throughput sequencing (Illumina MiSeq). We targeted bacterial non-specific acid (class A, phoN/phoC) and alkaline (phoD) phosphomonoesterase genes and quantified specific genes and transcripts using real-time PCR. Soil bacterial diversity was greatest after 4000 years of ecosystem development and associated with an increased richness of phylotypes and a significant decline in previously dominant taxa (Firmicutes and Proteobacteria). Soil fungal communities transitioned from predominantly Basidiomycota to Ascomycota along the chronosequence and were most diverse in 290- to 392-year-old soils, coinciding with maximum tree basal area and organic P accumulation. The Bacteria:Fungi ratio decreased amid a competitive and interconnected soil community as determined by network analysis. Overall, soil microbial communities were associated with soil changes and declining P throughout pedogenesis and ecosystem succession. We identified an increased dependence on organic P mineralization, as found by the profiled acid phosphatase genes, soil acid phosphatase activity and function inference from predicted metagenomes (PICRUSt2).


Author(s):  
Manoj Kumar Solanki ◽  
Chang-Ning Li ◽  
Fei-Yong Wang ◽  
Zhen Wang ◽  
Tao-Ju Lan ◽  
...  

Intercropping significantly improves land use efficiency and soil fertility. This study examines the impact of three cultivation systems (monoculture sugarcane, peanut-sugarcane and soybean-sugarcane intercropping) on soil properties and diazotrophs. Sugarcane rhizosphere soil was sampled from the farmers’ field. Soil properties and nifH gene abundance were analyzed by high throughput sequencing. Moreover, a total of 436,458 nifH gene sequences were obtained and classified into the 3201 unique operational taxonomic units (OTUs). Maximum unique OTUs resulted with soybean-sugarcane intercropping (<375). The dominant groups across all cultivation were Alpha-proteobacteria and Beta-proteobacteria. On the basis of microbial community structure, intercropping systems were more diverse than monoculture sugarcane. In the genus level, Bradyrhizobium, Burkholderia, Pelomonas, and Sphingomonas were predominant in the intercropping systems. Moreover, diazotrophic bacterial communities of these cultivation systems were positively correlated to the soil pH and soil enzyme protease. Moreover, low available P recovered from intercropping system showed a strong correlation with higher nutrient uptake activity of soil microbes. Based on the results, our investigation concluded that intercropping system caused a positive effect on the growth of diazotrophic bacterial communities and it might boost the soil fertility and this kind of study helps to develop an eco-friendly technology for sustainable sugarcane production.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoxue Fang ◽  
Huaying Wang ◽  
Ling Zhao ◽  
Manqi Wang ◽  
Mingzhou Sun

Abstract Background The resources of wild ginseng have been reducing sharply, and it is mainly dependent on artificial cultivation in China, Korea and Japan. Based on cultivation modes, cultivated ginseng include understory wild ginseng (the seeds or seedlings of cultivated ginseng were planted under the theropencedrymion without human intervention) and farmland cultivated ginseng (grown in farmland with human intervention). Cultivated ginseng, can only be planted on the same plot of land consecutively for several years owing to soilborne diseases, which is mainly because of the variation in the soil microbial community. In contrast, wild ginseng can grow for hundreds of years. However, the knowledge of rhizosphere microbe communities of the wild ginseng is limited. Result In the present study, the microbial communities in rhizosphere soils of the three types of ginseng were analyzed by high-throughput sequencing of 16 S rRNA for bacteria and internal transcribed spacer (ITS) region for fungi. In total, 4,381 bacterial operational taxonomic units (OTUs) and 2,679 fungal OTUs were identified in rhizosphere soils of the three types of ginseng. Among them, the shared bacterial OTUs was more than fungal OTUs by the three types of ginseng, revealing fungal communities were to be more affected than bacterial communities. In addition, the composition of rhizosphere microbial communities and bacterial diversity were similar between understory wild ginseng and wild ginseng. However, higher bacterial diversity and lower fungal diversity were found in rhizosphere soils of wild ginseng compared with farmland cultivated ginseng. Furthermore, the relative abundance of Chloroflexi, Fusarium and Alternaria were higher in farmland cultivated ginseng compared to wild ginseng and understory wild ginseng. Conclusions Our results showed that composition and diversity of rhizosphere microbial communities were significantly different in three types of ginseng. This study extended the knowledge pedigree of the microbial diversity populating rhizospheres, and provided insights into resolving the limiting bottleneck on the sustainable development of P. ginseng crops, and even the other crops of Panax.


Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Microbial communities play a key role in sustainable agriculture. However, we still need more in-formation, to understand the complex response of the microbial community to long-term organic farming, which aims to reduce synthetic fertilizer and pesticide use in order to produce sustainably and improve soil quality. We have assessed the long-term effect of two organic cropping systems and a conventional system on the microbial soil community structure using high-throughput se-quencing analysis. We analyzed the link between these communities and changes in soil properties and crop yield. Results showed that the crop yield was similar among the three cropping systems. Soil properties, such as total organic carbon, nitrogen, ammonium, magnesium and boron, influ-enced changes in the bacterial community structure. A linear discriminant analysis effect size (LEfSe) showed different bacteria and fungi as key microorganism of each of the three different cropping systems, in addition, our results reflected that fungal community were more sensitive than bacteria to cropping system. This research provides an insight about changes occurred in soils, especially in microbial communities considering the effect of that changes in crop yield which were remained stable among the different cropping systems.


2021 ◽  
Author(s):  
Sebastian Martinez

Rice is an important crop in Uruguay associated mostly with livestock production in a rice and pasture rotation system since the 1920s. However, in recent years there has been interest in intensifying the production in some of these systems to satisfy market demands and increase income. Intensification occurs by augmenting the rice frequency in the rotation, including new crops like sorghum and soybean, or shortening the pasture phase. A long-term experiment was established in 2012 in the main rice producing area of Uruguay with the objective to study the impact of intensification in rice rotations. After the first cycle of rotation soils from seven rotation phases were sampled and microbial communities were studied by means of high-throughput sequencing of Illumina NovaSeq 6000. Archaeal/bacterial and fungal community composition were studied (16S rRNA and 18S gene regions) detecting 3662 and 807 bacterial and fungal Operational Taxonomic Units (OTUs), respectively. Actinobacteria, Firmicutes and Proteobacteria were the most common bacterial phyla. Among them, only Proteobacteria differed significantly between rotations. Although most fungal OTUs were unidentified, Ascomycota, Basidiomycota and Mucoromycota were the most abundant fungal classes within identified taxa. Bacterial communities differed between rotations forming three groups according to the percentage of rice in the system. Fungal communities clustered in four groups, although not well differentiated, and mostly associated with the antecessor crop. Only P and C:N varied between rotations among soil physicochemical variables after six years, and individual bacterial OTUs appeared weakly influenced by P, pH, Mg and fungal OTUs by P. The results suggest that after six years, bacteria/archaeal communities were influenced by the time with rice in the rotation, and fungal communities were more influenced by the antecessor crop. More studies are needed to associate fungal communities with certain rotational or environmental variables. Some taxa were associated with a particular rotation, and some bacterial taxa were identified as biomarkers. Fungal indicator taxa were not identified at the species level for any rotation.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Johnston-Monje ◽  
Janneth P. Gutiérrez ◽  
Luis Augusto Becerra Lopez-Lavalle

Plant microbiomes play an important role in agricultural productivity, but there is still much to learn about their provenance, diversity, and organization. In order to study the role of vertical transmission in establishing the bacterial and fungal populations of juvenile plants, we used high-throughput sequencing to survey the microbiomes of seeds, spermospheres, rhizospheres, roots, and shoots of the monocot crops maize (B73), rice (Nipponbare), switchgrass (Alamo), Brachiaria decumbens, wheat, sugarcane, barley, and sorghum; the dicot crops tomato (Heinz 1706), coffee (Geisha), common bean (G19833), cassava, soybean, pea, and sunflower; and the model plants Arabidopsis thaliana (Columbia-0) and Brachypodium distachyon (Bd21). Unsterilized seeds were planted in either sterile sand or farm soil inside hermetically sealed jars, and after as much as 60 days of growth, DNA was extracted to allow for amplicon sequence-based profiling of the bacterial and fungal populations that developed. Seeds of most plants were dominated by Proteobacteria and Ascomycetes, with all containing operational taxonomic units (OTUs) belonging to Pantoea and Enterobacter. All spermospheres also contained DNA belonging to Pseudomonas, Bacillus, and Fusarium. Despite having only seeds as a source of inoculum, all plants grown on sterile sand in sealed jars nevertheless developed rhizospheres, endospheres, and phyllospheres dominated by shared Proteobacteria and diverse fungi. Compared to sterile sand-grown seedlings, growth on soil added new microbial diversity to the plant, especially to rhizospheres; however, all 63 seed-transmitted bacterial OTUs were still present, and the most abundant bacteria (Pantoea, Enterobacter, Pseudomonas, Klebsiella, and Massilia) were the same dominant seed-transmitted microbes observed in sterile sand-grown plants. While most plant mycobiome diversity was observed to come from soil, judging by read abundance, the dominant fungi (Fusarium and Alternaria) were also vertically transmitted. Seed-transmitted fungi and bacteria appear to make up the majority of juvenile crop plant microbial populations by abundance, and based on occupancy, there seems to be a pan-angiosperm seed-transmitted core bacterial microbiome. Further study of these seed-transmitted microbes will be important to understand their role in plant growth and health, as well as their fate during the plant life cycle and may lead to innovations for agricultural inoculant development.


2019 ◽  
Author(s):  
Huanhuan Gao ◽  
Xiangtian Yin ◽  
Xilong Jiang ◽  
Hongmei Shi ◽  
Yang Yang ◽  
...  

Background As a polymicrobial disease, grape sour rot can lead to the decrease in the yield of grape berries and wine quality. The diversity of microbial communities in sour rot-infected grapes depends on the planting location of grapes and the identified methods. The east coast of China is one of the most important grape and wine regions in China and even in the world. Methods To identify the pathogenic microorganism s causing sour rot in table grapes of eastern coastal areas of China, the diversity and abundance of the bacteria and fungi were assessed based on two methods, including traditional culture-methods, and 16S rRNA and ITS gene high-throughput sequencing . Then the pathogenicity of cultivable microorganisms was determined in laboratory. Results Based on traditional culture-methods, we identified 15 cultivable bacterial species and 10 fungal species from sour rot-infected grapes. The p athogenicity assay confirmed five cultivated fungi species (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum), and four bacteria species (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) as mainly pathogenic on grape. A. tenuissima, and F. proliferatum were the firstly discovered as pathogens on harvesting grape. Moreover, high-throughput sequencing revealed the OTUs numbers of bacteria and fungi were 1343.33 and 1038.67 respectively. Proteobacteria (72.15%) and Firmicutes (26.83%) were dominant phylums among the 19 bacterial phyla identified, while Ascomycota (93.86%) was the dominant fungal phylum. Then, bacteria such as Acetobacter sp., Gluconobacter sp., Bacillus sp., and Lactococcus sp. and fungi such as Incertae sedis sp., Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa took the vast majority ofmicrobial species in sour rot-infected grapes. Therefore, more accurate and abundant microbial communities in sour rot-infected grapes could be identified using the traditional culture-methods and high-throughput sequencing.


Sign in / Sign up

Export Citation Format

Share Document