scholarly journals A Metagenome-Wide Association Study of the Gut Microbiome and Metabolic Syndrome

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Qin ◽  
Su Yan ◽  
Yang Yang ◽  
Jingfeng Chen ◽  
Tiantian Li ◽  
...  

Metabolic syndrome (MetS) is a wide-ranging disorder, which includes insulin resistance, altered glucose and lipid metabolism, and increased blood pressure and visceral obesity. MetS symptoms combine to result in a significant increase in cardiovascular risk. It is therefore critical to treat MetS in the early stages of the disorder. In this study, 123 MetS patients and 304 controls were recruited to determine whether the gut microbiome plays a role in MetS development and progression. By using whole-genome shotgun sequencing, we found that the gut microbiomes of MetS patients were different from those of controls, with MetS patients possessing significantly lower gut microbiome diversity. In addition, 28 bacterial species were negatively correlated with waist circumstance, with Alistipes onderdonkii showing the strongest correlation, followed by Bacteroides thetaiotaomicron, Clostridium asparagiforme, Clostridium citroniae, Clostridium scindens, and Roseburia intestinalis. These species were also enriched in controls relative to MetS patients. In addition, pathways involved in the biosynthesis of carbohydrates, fatty acids, and lipids were enriched in the MetS group, indicating that microbial functions related to fermentation may play a role in MetS. We also found that microbiome changes in MetS patients may aggravate inflammation and contribute to MetS diseases by inhibiting the production of short-chain fatty acids (SCFAs). Taken together, these results indicate the potential utility of beneficial gut microbiota as a potential therapeutic to alleviate MetS.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuchika Nishitsuji ◽  
Syunsuke Watanabe ◽  
Jinzhong Xiao ◽  
Ryosuke Nagatomo ◽  
Hirohisa Ogawa ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1406 ◽  
Author(s):  
Lidia Sánchez-Alcoholado ◽  
Bruno Ramos-Molina ◽  
Ana Otero ◽  
Aurora Laborda-Illanes ◽  
Rafael Ordóñez ◽  
...  

Colorectal cancer (CRC) is the third most common cancer worldwide and the leading cause of cancer-related deaths. Recently, several studies have demonstrated that gut microbiota can alter CRC susceptibility and progression by modulating mechanisms such as inflammation and DNA damage, and by producing metabolites involved in tumor progression or suppression. Dysbiosis of gut microbiota has been observed in patients with CRC, with a decrease in commensal bacterial species (butyrate-producing bacteria) and an enrichment of detrimental bacterial populations (pro-inflammatory opportunistic pathogens). CRC is characterized by altered production of bacterial metabolites directly involved in cancer metabolism including short-chain fatty acids and polyamines. Emerging evidence suggests that diet has an important impact on the risk of CRC development. The intake of high-fiber diets and the supplementation of diet with polyunsaturated fatty acids, polyphenols and probiotics, which are known to regulate gut microbiota, could be not only a potential mechanism for the reduction of CRC risk in a primary prevention setting, but may also be important to enhance the response to cancer therapy when used as adjuvant to conventional treatment for CRC. Therefore, a personalized modulation of the pattern of gut microbiome by diet may be a promising approach to prevent the development and progression of CRC and to improve the efficacy of antitumoral therapy.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
B Verhaar ◽  
D Collard ◽  
A Prodan ◽  
J.H.M Levels ◽  
A.H Zwinderman ◽  
...  

Abstract Background Gut microbiome composition is shaped by a combination of host genetic make-up and dietary habits. In addition, large ethnic differences exist in microbiome composition. Several studies in humans and animals have shown that differences in gut microbiota and its metabolites, including short chain fatty acids (SCFA), are associated with blood pressure (BP). We hypothesized that gut microbiome composition and its metabolites may be differently associated with BP across ethnic groups. Purpose To investigate associations of gut microbiome composition and fecal SCFA levels with BP across different ethnic groups. Methods We assessed the association between gut microbiome composition and office BP among 4672 subjects (mean age 49.8±11.7 years, 52%F) of 6 different ethnic groups participating in the HELIUS study. Gut microbiome composition was determined using 16S rRNA sequencing. Associations between microbiome composition and blood pressure were assessed using machine learning prediction models. The resulting best predictors were correlated with BP using Spearman's rank correlations. Fecal SCFA levels were measured with high-performance liquid chromatography in an age- and body mass index (BMI)-matched subgroup of 200 participants with either extreme low or high systolic BP. Differences in abundances of best predictors and fecal SCFA levels between high and low BP groups were assessed with Mann-Whitney U tests. Results Gut microbiome composition explained 4.4% of systolic BP variance. Best predictors for systolic BP included Roseburia spp. (ρ −0.15, p<0.001), Clostridium spp. (ρ −0.14, p<0.001), Romboutsia spp. (ρ −0.10, p<0.001), and Ruminococceae spp. (ρ −0.15, p<0.001) (Figure 1). Explained variance of the microbiome composition was highest in Dutch subjects (4.8%), but very low in African Surinamese, Ghanaian, and Turkish ethnic groups (ranging from 0–0.77%) Hence, we selected only participants with Dutch ethnicity for the matched subgroup. Participants with high BP had lower abundance of Roseburia hominis (p<0.01) and Roseburia spp. (p<0.05) compared to participants with low BP. However, fecal acetate (p<0.05) and propionate (p<0.01) levels were higher in participants with high BP. Conclusions In this cross-sectional study, gut microbiome composition was moderately associated with BP. Associations were strongly divergent between ethnic groups, with strongest associations in Dutch participants. Intriguingly, while Dutch participants with high BP had lower abundances of several SCFA-producing microbes, they had higher fecal SCFA levels. Intervention studies with SCFAs could provide more insight in the effects of these metabolites on BP. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): The Academic Medical Center (AMC) of Amsterdam and the Public Health Service of Amsterdam (GGD Amsterdam) provided core financial support for HELIUS. The HELIUS study is also funded by research grants of the Dutch Heart Foundation (Hartstichting; grant no. 2010T084), the Netherlands Organization for Health Research and Development (ZonMw; grant no. 200500003), the European Integration Fund (EIF; grant no. 2013EIF013) and the European Union (Seventh Framework Programme, FP-7; grant no. 278901).


Author(s):  
Ana Soriano-Lerma ◽  
María García-Burgos ◽  
María J.M. Alférez ◽  
Virginia Pérez-Carrasco ◽  
Victoria Sanchez-Martin ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Tess Pallister ◽  
Matthew A. Jackson ◽  
Tiphaine C. Martin ◽  
Jonas Zierer ◽  
Amy Jennings ◽  
...  

Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Moira K Differding ◽  
Lawrence J Appel ◽  
Nisa Maruthur ◽  
Stephen Juraschek ◽  
Edgar R Miller ◽  
...  

Background: Murine models indicate that gut microbiota, and the short chain fatty acids (SCFAs) they produce from fermentation of fiber, play a role in blood pressure (BP) regulation. However, few human studies have examined how gut microbiota and serum SCFAs are associated with hypertension. Objective: We examined associations of gut microbiota composition and serum SCFAs with hypertension and BP, hypothesizing an inverse association with serum SCFAs. Methods: We performed a cross-sectional analysis of baseline data from a trial of overweight and obese adult cancer survivors. We measured 1 ) the gut microbiome by extracting microbial DNA from stool and sequencing the 16S rRNA V4 region and 2 ) serum SCFA using liquid chromatography mass spectrometry. Hypertension was defined as systolic BP ≥ 130, diastolic BP ≥ 80 mmHg, self-report, or use of hypertension medications. We used beta-binomial models to test differential abundance of microbial amplicon sequence variants by hypertension , and linear regression to examine log-transformed SCFAs with BP. We adjusted models for age, sex, race, fiber, BMI and medications (in BP models). Results: Of 111 participants with complete data, 73 had hypertension. Hypertensive participants differed by age (mean 62 vs. 56y) and sex (73% vs. 90% female), but not race (46% black) or BMI (mean 35 kg/m 2 ). Alpha and beta diversity were not associated with hypertension (Ps>0.05). Hypertensive participants had higher abundance of Bacteroides, Parabacteroides, Bifidobacterium and Escherichia , and lower Lachnospiraceae, Haemophilus and Faecalibacterium ( Figure) . Serum acetate was negatively associated with systolic BP (β=-3.3 mmHg difference per 1 SD increment acetate, 95% CI: -6.1, -0.6); other SCFAs were not associated (Ps>0.05). Conclusion: A Bacteroides dominated microbiota was positively associated with hypertension. Acetate, the most abundant circulating SCFA, was negatively associated with BP. Determining whether the associations are causal or not warrants further investigation.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1613 ◽  
Author(s):  
Ronald Hills ◽  
Benjamin Pontefract ◽  
Hillary Mishcon ◽  
Cody Black ◽  
Steven Sutton ◽  
...  

The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Marianne Collard ◽  
Nataleigh Austin ◽  
Ann Tallant ◽  
Patricia Gallagher

Abstract Objectives The goal of this study was to determine if a proprietary muscadine grape seed and skin extract (MGE) inhibits triple negative breast cancer (TNBC) metastasis and alters the gut microbiota. Methods 4T1 TNBC cells were injected into the mammary fat pad of 6-week-old female Balb/c mice. After 2 weeks, tumors were surgically removed and mice were placed into a control group (n = 8) or a treatment group that received 0.1 mg/mL total phenolics MGE (Piedmont R&D) in the drinking water (n = 8). Mice were sacrificed after 4 weeks; tissues and fecal samples were collected for analysis. Immunohistochemistry (Ki67, α-SMA) and hemotoxylin and eosin staining were used to quantify metastases using the inForm© 2.2 software. Gut microbial composition was determined by 16S rRNA sequencing and short chain fatty acids were detected by gas chromatography (Microbiome Insights). Data are expressed as means ± SEM using student's t-test. Results MGE reduced Ki67 cell positivity in the lungs and livers of mice, indicating reduced metastatic proliferation (9.3 ± 0.9% vs 6.2 ± 0.7% and 5.0 ± 1.5% vs 0.77 ± 0.2% cells, respectively; P < 0.01), and decreased cancer associated fibroblasts in the lungs (5.3 ± 1.0% vs 3.0 ± 0.5% cells; P < 0.05), which are associated with metastasis. MGE significantly reduced the number (4.7 ± 0.7 vs 2.2 ± 0.4 tumors/field; P < 0.01) and size (1358 ± 48 vs 1121 ± 47 pixels; P < 0.01) of liver metastases, resulting in decreased metastatic tumor burden (6656 ± 1220 vs 3096 ± 644 total area in pixels; P < 0.01). Attenuated TNBC metastasis correlated with MGE-induced changes in gut microbiota. Alpha diversity (4.15 ± 0.10 vs 4.51 ± 0.13 Shannon index; P < 0.05) and the Firmicutes to Bacteroidetes ratio (0.37 ± 0.07 vs 0.76 ± 0.12; P < 0.05) were significantly increased in MGE-treated mice, indicating enhanced microbial richness and increased energy harvest by the gut microbiome. Butyrate-producing bacteria, such as Ruminococcus, Butyricicoccus and Lachnospiraceae, were increased with MGE (P < 0.05) as well as the anti-inflammatory compound butyrate relative to other short-chain fatty acids (25.0 ± 2.7% vs 75.3 ± 15.5%; P < 0.01). Conclusions These data show that MGE attenuates TNBC metastasis in association with alterations in the gut microbiome, suggesting that MGE may be an effective treatment against TNBC metastatic progression. Funding Sources Chronic Disease Research Fund.


Sign in / Sign up

Export Citation Format

Share Document