scholarly journals Effects of Zinc Source and Enzyme Addition on the Fecal Microbiota of Dogs

2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Margarida Pereira ◽  
Margarida R. G. Maia ◽  
Carlo Pinna ◽  
Giacomo Biagi ◽  
Elisabete Matos ◽  
...  

Supplemental zinc from organic sources has been suggested to be more bioavailable than inorganic ones for dog foods. However, the bioavailability of zinc might be affected by dietary constituents such as phytates. The present study aimed to evaluate the effects of two zinc sources (zinc sulfate and zinc proteinate) and the addition of a multi-enzymatic complex from the solid-state fermentation of Aspergillus niger on end-products of fecal fermentation and fecal microbiota of adult Beagles fed a high-phytate diet. The experimental design consisted of three 4 × 4 Latin Squares with a 2 × 2 factorial arrangement of treatments (n = 12 Beagles), with four periods and four diets: zinc sulfate without (IZ) or with (IZ +) enzyme addition, and zinc proteinate without (OZ) or with (OZ +) enzyme addition. Enzyme addition significantly affected Faith’s phylogenetic diversity index, whereas zinc source did not affect either beta or alpha diversity measures. Linear discriminant analysis effect size detected nine taxa as markers for organic zinc, 18 for inorganic source, and none for enzyme addition. However, with the use of a negative binomial generalized linear model, further effects were observed. Organic zinc was associated with a significantly higher abundance of Firmicutes and lower Proteobacteria and Bacteroidetes, although at a genus level, the response varied. The DNA abundance of Clostridium cluster I, Clostridium cluster XIV, Campylobacter spp., Ruminococcaceae, Turicibacter, and Blautia was significantly higher in dogs fed IZ and IZ + diets. Higher abundance of genus Lactobacillus was observed in dogs fed enzyme-supplemented diets. End-products of fecal fermentation were not affected by zinc source or enzymes. An increase in some taxa of the phyla Actinobacteria and Firmicutes was observed in feces of dogs fed organic zinc with enzyme addition but not with inorganic zinc. This study fills a gap in knowledge regarding the effect of zinc source and enzyme addition on the fecal microbiota of dogs. An association of zinc bioavailability and bacteria abundance is suggested, but the implications for the host (dog) are not clear. Further studies are required to unveil the effects of the interaction between zinc sources and enzyme addition on the fecal microbial community.

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 400 ◽  
Author(s):  
Ana Margarida Pereira ◽  
Margarida Guedes ◽  
Elisabete Matos ◽  
Edgar Pinto ◽  
Agostinho A. Almeida ◽  
...  

Zinc is an essential element, a cofactor of many enzymes, and performs catalytic, structural and regulatory functions. Once in the gastrointestinal tract, zinc can interact with food constituents. Phytic acid, the major phosphorus storage in plants, limits zinc availability from animal feeds due to the formation of insoluble complexes with phytates. This study tested the effect of supplemental zinc source (zinc sulfate and a chelate zinc proteinate) and the addition of exogenous enzymes from a solid-state fermentation product of Aspergillus niger to a high phytate diet. The study was designed according to three Latin Squares 4 × 4 with a 2 × 2 factorial arrangement of treatments, with four periods, four diets, and 12 young adult Beagles. Periods lasted 5 weeks each. Diets were supplemented with 75 mg/kg of zinc sulfate (IZ) or zinc proteinate (OZ), and without or with 200 mg/kg of exogenous enzymes (IZ+, OZ+). Results showed that zinc proteinate increased the bioavailability of phosphorus, yet the zinc biomarkers remained unaffected by the zinc source, with the exception of lymphocyte subsets that benefit from zinc proteinate. The use of exogenous enzymes did not affect zinc availability nor nutrient and energy digestibility.


2020 ◽  
Vol 15 ◽  
Author(s):  
Mohanad Mohammed ◽  
Henry Mwambi ◽  
Bernard Omolo

Background: Colorectal cancer (CRC) is the third most common cancer among women and men in the USA, and recent studies have shown an increasing incidence in less developed regions, including Sub-Saharan Africa (SSA). We developed a hybrid (DNA mutation and RNA expression) signature and assessed its predictive properties for the mutation status and survival of CRC patients. Methods: Publicly-available microarray and RNASeq data from 54 matched formalin-fixed paraffin-embedded (FFPE) samples from the Affymetrix GeneChip and RNASeq platforms, were used to obtain differentially expressed genes between mutant and wild-type samples. We applied the support-vector machines, artificial neural networks, random forests, k-nearest neighbor, naïve Bayes, negative binomial linear discriminant analysis, and the Poisson linear discriminant analysis algorithms for classification. Cox proportional hazards model was used for survival analysis. Results: Compared to the genelist from each of the individual platforms, the hybrid genelist had the highest accuracy, sensitivity, specificity, and AUC for mutation status, across all the classifiers and is prognostic for survival in patients with CRC. NBLDA method was the best performer on the RNASeq data while the SVM method was the most suitable classifier for CRC across the two data types. Nine genes were found to be predictive of survival. Conclusion: This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy. Future studies should determine the effectiveness of integration in cancer survival analysis and the application on unbalanced data, where the classes are of different sizes, as well as on data with multiple classes.


2021 ◽  
Vol 95 ◽  
Author(s):  
A. Čeirāns ◽  
E. Gravele ◽  
I. Gavarane ◽  
M. Pupins ◽  
L. Mezaraupe ◽  
...  

Abstract Helminth infracommunities were studied at 174 sites of Latvia in seven hosts from six amphibian taxa of different taxonomical, ontogenic and ecological groups. They were described using a standard set of parasitological parameters, compared by ecological indices and linear discriminant analysis. Their species associations were identified by Kendall's rank correlation, but relationships with host size and waterbody area were analysed by zero-inflated Poisson and zero-inflated negative binomial regressions. The richest communities (25 species) were found in post-metamorphic semi-aquatic Pelophylax spp. frogs, which were dominated by trematode species of both adult and larval stages. Both larval and terrestrial hosts yielded depauperate trematode communities with accession of aquatic and soil-transmitted nematode species, respectively. Nematode loads peaked in terrestrial Bufo bufo. Helminth infracommunities suggested some differences in host microhabitat or food object selection not detected by their ecology studies. Associations were present in 96% of helminth species (on average, 7.3 associations per species) and dominated positive ones. Species richness and abundances, in most cases, were positively correlated with host size, which could be explained by increasing parasite intake rates over host ontogeny (trematode adult stages) or parasite accumulation (larval Alaria alata). Two larval diplostomid species (Strigea strigis, Tylodelphys excavata) had a negative relationship with host size, which could be caused by parasite-induced host mortality. The adult trematode abundances were higher in larger waterbodies, most likely due to their ecosystem richness, while higher larval abundances in smaller waterbodies could be caused by elevated infection rates under high host densities.


1969 ◽  
Vol 60 (1) ◽  
pp. 105-112
Author(s):  
Calixta S. Torres ◽  
Juan L. Aguiar ◽  
Eleanor F. Gotay

Employees of an agricultural research unit were evaluated for selection as rum tasters. Prospects were classified and ranked considering their relative consistency in four organoleptic tests of four rum samples and their evaluation relative to those of an experienced rum taster. Statistical techniques used were variance analysis of Latin squares for the scores of the evaluation of 10 rum attributes and the calculation of a rum evaluation index for each taster using a linear discriminant function.


2018 ◽  
Vol 96 (suppl_2) ◽  
pp. 134-135 ◽  
Author(s):  
K M Mills ◽  
J A Feldpausch ◽  
A W Duttlinger ◽  
S K Elefson ◽  
S M Zuelly ◽  
...  

2003 ◽  
Vol 81 (2-3) ◽  
pp. 161-171 ◽  
Author(s):  
J Kessler ◽  
I Morel ◽  
P.-A Dufey ◽  
A Gutzwiller ◽  
A Stern ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yifan Zhong ◽  
Jiahong Cao ◽  
Zhaoxi Deng ◽  
Yanfei Ma ◽  
Jianxin Liu ◽  
...  

Both fecal microbiota transplantation (FMT) and dietary fiber intervention were verified as effective ways to manipulate the gut microbiota, whereas little is known about the influence of the combined methods on gut microbiota. Here, we constructed “non-industrialized” and “industrialized” gut microbiota models to investigate the donor effect of FMT and diet effect in shaping the gut microbiota. Mice were transplanted fecal microbiota from domestic pig and received a diet with low-fiber (D) or high-fiber (DF), whereas the other two groups were transplanted fecal microbiota from wild pig and then received a diet with low-fiber (W) or high-fiber (WF), respectively. Gut microbiota of WF mice showed a lower Shannon and Simpson index (P < 0.05), whereas gut microbiota of W mice showed no significant difference than that of D and DF mice. Random forest models revealed the major differential bacteria genera between four groups, including Anaeroplasma or unclassified_o_Desulfovibrionales, which were influenced by FMT or diet intervention, respectively. Besides, we found a lower out-of-bag rate in the random forest model constructed for dietary fiber (0.086) than that for FMT (0.114). Linear discriminant analysis effective size demonstrated that FMT combined with dietary fiber altered specific gut microbiota, including Alistipes, Clostridium XIVa, Clostridium XI, and Akkermansia, in D, DF, W, and WF mice, respectively. Our results revealed that FMT from different donors coupled with dietary fiber intervention could lead to different patterns of gut microbiota composition, and dietary fiber might play a more critical role in shaping gut microbiota than FMT donor. Strategies based on dietary fiber can influence the effectiveness of FMT in the recipient.


2021 ◽  
Vol 21 (04) ◽  
pp. 17854-17875
Author(s):  
Edda Lungu ◽  
◽  
J Auger ◽  
A Piano ◽  
WJ Dahl ◽  
...  

Dietary fiber favorably modulates gut microbiota and may be protective against diarrhea in sub-Saharan Africa where rates in infants and young children are high. Soybean hull is high in fiber and accessible in rural Africa; however, its use in complementary feeding has not been evaluated. The objective of this study was to determine the acceptability and feasibility of a soybean, soy hull fiber, and maize (SFM) blend food; the primary outcome was compliance to the feeding protocol. Secondary outcomes were stool form and frequency, fecal microbiota composition, growth and dietary intake. In a parallel, single-blind study, children 6-36 months of age from the Lilongwe district of Malawi were randomized to receive daily SFM (n=69) or maize only(n=10) porridge(phala) for 6 months. Anthropometrics were measured monthly, and compliance, stool frequency,and stool form, weekly. At baseline, 3-month,and 6-month (study end) time points, dietary intake (24-h recall) was assessed,and fecal samples were collected. Fecal DNA was analyzed by Real-Time polymerase chain reaction (PCR) for microbes of interest and 16S rRNA gene amplicon sequencing. Mothers accessed the acceptability and feasibility of the study foods at study end. Mothers reported excellent compliance to feeding the SFM porridge, rated it more acceptable than maize,and noted improved appetite, weight, and stool consistency of their children. Stool frequency at baseline (2±1 stools/d) was unchanged with intervention; however, there were significantly fewer diarrhea-type stools reported during study months 4-6 vs.1-3 for the SFM group, whereas no improvement was seen for the maize group. At study end, the fecal abundance ofAkkermansia muciniphila was enriched in children receiving the SFM, compared to maize (p<0.05), and a trend for increased Faecalibacterium prausnitzii (p=0.07) was seen. A comparison of fecal microbiota composition using linear discriminant analysis effect size (LEfSe)showed notable differences in numerous taxa in the SFM group compared to baseline, whereas the maize comparator exhibited fewer changes. Fiber intake was higher for the SFMgroup, compared to maize at 6 months (13.7±3.8 vs. 8.4±4.5 g/day, p<0.01). Weight-for-height and BMI-for-age Z-scores were significantly higher for the SFM group. In young Malawian children, feeding a blend of soybean, soy hulls and maize reduced diarrhea-type stools and increased the abundance of Akkermansia muciniphila, a bacterial species involved in maintaining intestinal health, and thus may provide a feasible means of improving wellness in children in resource-poor settings through the modulation of microbiota composition.


Sign in / Sign up

Export Citation Format

Share Document