scholarly journals Bacterial Composition Associated With Giant Colonies of the Harmful Algal Species Phaeocystis globosa

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhu Zhu ◽  
Rui Meng ◽  
Walker O. Smith Jr. ◽  
Hai Doan-Nhu ◽  
Lam Nguyen-Ngoc ◽  
...  

The cosmopolitan algae Phaeocystis globosa forms harmful algal blooms frequently in a number of tropical and subtropical coastal regions in the past two decades. During the bloom, the giant colony, which is formed by P. globosa, is the dominant morphotype. However, the microenvironment and the microbial composition in the intracolonial fluid are poorly understood. Here, we used high-throughput 16S rRNA amplicon sequencing to examine the bacterial composition and predicted functions in intracolonial fluid. Compared with the bacterial consortia in ambient seawater, intracolonial fluids possessed the lower levels of microbial richness and diversity, implying selectivity of bacteria by the unique intracolonial microenvironment enclosed within the P. globosa polysaccharide envelope. The bacterial consortia in intracolonial fluid were dominated by Balneola (48.6% of total abundance) and Labrezia (28.5%). The bacteria and microbial function enriched in intracolonial fluid were involved in aromatic benzenoid compounds degradation, DMSP and DMS production and consumption, and antibacterial compounds synthesis. We suggest that the P. globosa colonial envelope allows for the formation of a specific microenvironment; thus, the unique microbial consortia inhabiting intracolonial fluid has close interaction with P. globosa cells, which may benefit colony development.

Author(s):  
Xiangzheng Ren ◽  
Zhiming Yu ◽  
Lixia Qiu ◽  
Xihua Cao ◽  
Xiuxian Song

Phaeocystis globosa is a globally distributed harmful algal blooms (HABs) species dominated by the colonial morphotype, which presents dramatic environmental hazards and poses a threat to human health. Modified clay (MC) can effectively flocculate HAB organisms and prevent their subsequent growth, but the effects of MC on colony-dominated P. globosa blooms remain uncertain. In this paper, a series of removal and incubation experiments were conducted to investigate the growth, colony formation and colony development of P. globosa cells after treatment with MC. The results show that the density of colonies was higher at MC concentrations below 0.2 g/L compared to those in the control, indicating the role of P. globosa colonies in resistance to environmental stress. Concentrations of MC greater than 0.2 g/L could reduce the density of solitary cells and colonies, and the colony diameter and extracellular polysaccharide (EPS) content were also decreased. The adsorption of MC to dissolved inorganic phosphorus (DIP) and the cell damage caused by collision may be the main mechanisms underlying this phenomenon. These results elucidate that the treatment with an appropriate concentration of MC may provide an effective mitigation strategy for P. globosa blooms by preventing their growth and colony formation.


2021 ◽  
Vol 869 (1) ◽  
pp. 012068
Author(s):  
X Qin ◽  
X Chen ◽  
F Li ◽  
H Ya ◽  
D Zhu ◽  
...  

Abstract With the increased scale of marine aquaculture in the Beibu Gulf, as well as accelerating urbanization and industrialization, frequent harmful algal blooms (HABs) have occurred in this area, especially those formed by Phaeocystis globosa in the past several years. As the P. globosa bloom has been a serious marine ecological disaster in the Beibu Gulf, research on quick and effective methods to eliminate P. globosa blooms is a hot research topic. In this study, the bacteria Streptomyces yatensis B4503 combined with modified diatomite was used to prepare algicidal modified clay, which was then used to study the removal effect on P. globosa blooms in field culture enclosures. The results showed that after 6 h of treatment with algicidal modified clay, compared with the blank control group, the cell density and chlorophyll a content of P. globosa decreased by 26.86% and 64.03%, respectively, and they decreased by 75.23% and 84.81%, respectively, after 24 h. The study indicated that algicidal modified clay can be applied to eliminate HABs caused by P. globosa in coastal water.


Author(s):  
Jingyi Zhu ◽  
Yeyin Yang ◽  
Shunshan Duan ◽  
Dong Sun

Antialgal compounds from plants have been identified as promising candidates for controlling harmful algal blooms (HABs). In our previous study, luteolin-7-O-glucuronide was used as a promising algistatic agent to control Phaeocystis globosa (P. globose) blooms; however, its antialgal mechanism on P. globosa have not yet been elaborated in detail. In this study, a liquid chromatography linked to tandem mass spectrometry (LC-MS/MS)-based untargeted metabolomic approach was used to investigate changes in intracellular and extracellular metabolites of P. globosa after exposure to luteolin-7-O-glucuronide. Significant differences in intracellular metabolites profiles were observed between treated and untreated groups; nevertheless, metabolic statuses for extracellular metabolites were similar among these two groups. For intracellular metabolites, 20 identified metabolites showed significant difference. The contents of luteolin, gallic acid, betaine and three fatty acids were increased, while the contents of α-Ketoglutarate and acetyl-CoA involved in tricarboxylic acid cycle, glutamate, and 11 organic acids were decreased. Changes in those metabolites may be induced by the antialgal compound in response to stress. The results revealed that luteolin played a vital role in the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, because luteolin increased the most in the treatment groups and had strong antialgal activity on P. globosa. α-Ketoglutarate and acetyl-CoA were the most inhibited metabolites, indicating that the antialgal compound inhibited the growth through disturbed the tricarboxylic acid (TCA) cycle of algal cells. To summarize, our data provides insights into the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, which can be used to further control P. globosa blooms.


Author(s):  
H.M. Al-Ghelani ◽  
A.Y.A AlKindi ◽  
S. Amer ◽  
Y.K Al-Akhzami

Harmful, toxic algae are now considered as one of the important players in the newly emerging environmental risk factors. The apparent global increase in harmful algal blooms (HABs) is becoming a serious problem in both aquaculture and fisheries populations. Not only has the magnitude and intensity of public health and economic impacts of these blooms increased in recent years, but the number of geographic locations experiencing toxic algal blooms has also increased dramatically. There are two primary factors causing HABs outbreaks. The natural processes such as upwelling and relaxation, and the anthropogenic loading resulting in eutrophication. However, the influence of global climate changes on algal bloom phenomenon cannot be ignored. The problem warrants development of effective strategies for the management and mitigation of HABs. Progress made in the routine coastal monitoring programs, development of methods for detection of algal species and toxins and coastal modeling activities for predicting HABs reflect the international concerns regarding the impacts of HABs. Innovative techniques using molecular probes will hopefully result in development of rapid, reliable screening methods for phycotoxins and the causative organisms.            


2021 ◽  
Author(s):  
Yu Ting Zhang ◽  
Shanshan SONG ◽  
Bin ZHANG ◽  
Yang ZHANG ◽  
Miao TIAN ◽  
...  

Abstract Toxic harmful algal blooms (HABs) can cause deleterious effects in marine organisms, threatening the stability of marine ecosystems. It is well known that different strains, natural populations and growth conditions of the same toxic algal species may lead to different amount of phycotoxin production and the ensuing toxicity. To fully assess the ecological risk of toxic HABs, it is of great importance to investigate the toxic effects of phycotoxins in marine organisms. In this study, the short-term toxicity of 14 common phycotoxins (alone and in combination) in the marine zooplankton Artemia salina was investigated. On the basis of 48 h LC50, the order of toxicity in A. salina was AZA3 (with a LC50 of 0.0203 µg/ml)>AZA2 (0.0273 µg/ml) >PTX2 (0.0396 µg/ml)>DTX1 (0.0819 µg/ml)>AZA1 (0.106 µg/ml)> SPX1 (0.144 µg/ml)>YTX (0.172 µg/ml)>dcSTX (0.668 µg/ml)>OA (0.728 µg/ml)>STX (1.042 µg/ml)>GYM (1.069 µg/ml)>PbTx3 (1.239 µg/ml)>hYTX (1.799 µg/ml)>PbTx2 (2.415 µg/ml). For the binary exposure, additive effects of OA and DTX1, DTX1 and hYTX; antagonistic effects of OA and PTX2, OA and STX; and synergetic effects of DTX1 and STX, DTX1 and YTX, DTX1 and PTX2, PTX2 and hYTX on the mortality of A. salina were observed. These results provide valuable toxicological data for assessing the impact of phycotoxins on marine planktonic species and highlight the potential ecological risk of toxic HABs in marine ecosystems.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 396
Author(s):  
Christina Tsikoti ◽  
Savvas Genitsaris

Anthropogenic marine eutrophication has been recognized as one of the major threats to aquatic ecosystem health. In recent years, eutrophication phenomena, prompted by global warming and population increase, have stimulated the proliferation of potentially harmful algal taxa resulting in the prevalence of frequent and intense harmful algal blooms (HABs) in coastal areas. Numerous coastal areas of the Mediterranean Sea (MS) are under environmental pressures arising from human activities that are driving ecosystem degradation and resulting in the increase of the supply of nutrient inputs. In this review, we aim to present the recent situation regarding the appearance of HABs in Mediterranean coastal areas linked to anthropogenic eutrophication, to highlight the features and particularities of the MS, and to summarize the harmful phytoplankton outbreaks along the length of coastal areas of many localities. Furthermore, we focus on HABs documented in Greek coastal areas according to the causative algal species, the period of occurrence, and the induced damage in human and ecosystem health. The occurrence of eutrophication-induced HAB incidents during the past two decades is emphasized.


2019 ◽  
Vol 70 (6) ◽  
pp. 794 ◽  
Author(s):  
Jin Ho Kim ◽  
Minji Lee ◽  
Young Kyun Lim ◽  
Yun Ji Kim ◽  
Seung Ho Baek

Because the phytoplankton community and blooms are regulated by various environmental factors, it is difficult to define the cause and occurrence of the phenomenon of harmful algal blooms (HABs). This study evaluated the phytoplankton community and occurrence characteristic of HAB species related to coastal environments in South Korea, 2016. In summer, because of strong upwelling event, the surface sweater temperature around Geoje Island was abnormally low (17°C), and an unusual high temperature (29°C) and low salinity (29psu) were measured in offshore area. Diatoms and dinoflagellates showed contrasting occurrences during the survey period. Diatoms were dominant in the inshore area, whereas dinoflagellates occurred in the offshore area. The phytoplankton-community structures were established depending on different hydro-oceanographic characteristics. In statistical analysis, HABs of dinoflagellate Karenia appeared in upwelling areas with a high nutritional content, whereas Gymnodinium, Gyrodinium and Prorocentrum appeared in areas of low nutrients in June, and HAB species showed an equivalent tendency to appear at high water temperature and low saline level in August. Our results indicated that hydro-oceanographic events such as river discharge, current and upwelling play important roles in determining the phytoplankton community and potential occurrence characteristics of HABs in the coastal environment of South Korea.


Author(s):  
Jingyi Zhu ◽  
Han Xiao ◽  
Qi Chen ◽  
Min Zhao ◽  
Dong Sun ◽  
...  

Enhalus acoroides (E. acoroides) is one of the most common species in seagrass meadows. Based on the application of allelochemicals from aquatic plants to inhibit harmful algal blooms (HABs), we used E. acoroides aqueous extract against harmful algae species Phaeocystis globosa (P. globosa). The results showed that E. acoroides aqueous extract could significantly inhibited the growth of P. globosa, decrease the chlorophyll-a content and photosynthetic efficiency (Fv/Fm) values of P. globosa, followed by vacuolization, plasmolysis, and the destruction of organelles. Twelve types of major chemical constituents were identified in E. acoroides aqueous extracts by ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS), including six flavonoids, two homocyclic peptides, two long-chain aliphatic amides, one tannin, and one nitrogen heterocyclic compound. Flavonoids were the characteristic chemical constituents of E. acoroides aqueous extract. Furthermore, the antialgal activity of luteolin-7-O-glucuronide (68.125 μg/mL in 8 g/L E. acoroides aqueous extract) was assessed. The EC50–96 h value was 34.29 μg/mL. In conclusion, the results revealed that luteolin 7-O-glucuronide was one of the antialgal compounds of E. acoroides aqueous extract, with potential application as novel algaecide.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Suraksha M. Pednekar ◽  
S. G. Prabhu Matondkar ◽  
Vijaya Kerkar

Mandovi and Zuari estuarine complex is monsoon-influenced estuaries located along the central west coast of India. During the past few years, there has been an increase in nutrient loading specially during monsoonal runoff which is responsible for the growth of harmful algal flora. To understand occurrence and distribution of harmful algal blooms species, daily/alternate day samplings were carried out in Mandovi and Zuari estuaries during 2007-2008 and 2008-2009 periods, respectively, comprising of monsoon (June–November) and nonmonsoon (December–May). In Mandovi, total 54 HAB species with 49 in monsoon and 36 during nonmonsoon period were reported. In Zuari, total 46 HAB species with 38 in monsoon and 41 were reported during nonmonsoon period. Bray-Curtis cluster analysis based on log-transformed phytoplankton density detected seven well-defined groups revealing spatiotemporal variability. The density of the dominant harmful algal species was significantly positively correlated with nutrients, but negatively correlated with salinity. The results of the study indicate that monsoon plays an important role in occurrence and distribution of harmful algal species having direct correlation with salinity variations and nutrient loading.


Sign in / Sign up

Export Citation Format

Share Document