scholarly journals Metagenomic Analysis of Biocide-Treated Neotropical Oil Reservoir Water Unveils Microdiversity of Thermophile Tepidiphilus

2021 ◽  
Vol 12 ◽  
Author(s):  
Katherine Bedoya ◽  
Jhorman Niño ◽  
Julia Acero ◽  
Ronald Jaimes-Prada ◽  
Felipe Cabarcas ◽  
...  

Microorganisms are capable of colonizing extreme environments like deep biosphere and oil reservoirs. The prokaryotes diversity in exploited oil reservoirs is composed of indigenous microbial communities and artificially introduced microbes. In the present work, high throughput sequencing techniques were applied to analyze the microbial community from the injected and produced water in a neotropical hyper-thermophile oil reservoir located in the Orinoquia region of Colombia, South America. Tepidiphilus is the dominant bacteria found in both injection and produced waters. The produced water has a higher microbial richness and exhibits a Tepidiphilus microdiversity. The reservoir injected water is recycled and treated with the biocides glutaraldehyde and tetrakis-hydroxymethyl-phosphonium sulfate (THPS) to reduce microbial load. This process reduces microbial richness and selects a single Tepidiphilus genome (T. sp. UDEAICP_D1) as the dominant isolate. Thermus and Hydrogenobacter were subdominants in both water systems. Phylogenomic analysis of the injection water dominant Tepidiphilus positioned it as an independent branch outside T. succinatimandens and T. thermophilus lineage. Comparative analysis of the Tepidiphilus genomes revealed several genes that might be related to the biocide-resistant phenotype and the tolerance to the stress conditions imposed inside the oil well, like RND efflux pumps and type II toxin-antitoxin systems. Comparing the abundance of Tepidiphilus protein-coding genes in both water systems shows that the biocide selected Tepidiphilus sp. UDEAICP_D1 genome has enriched genes annotated as ABC-2 type transporter, ABC transporter, Methionine biosynthesis protein MetW, Glycosyltransferases, and two-component system NarL.

Biologia ◽  
2015 ◽  
Vol 70 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Neha Saxena ◽  
Soham Pore ◽  
Preeti Arora ◽  
Neelam Kapse ◽  
Anupama Engineer ◽  
...  

Abstract‘Produced water’ is a term used in oil industry to describe water produced along with oil and gas from oil reservoir. Microorganisms have been frequently isolated from produced water/oil reservoirs; however, there is paucity of information regarding the diversity and characterization of bacterial flora from Indian oil reservoirs. The present investigation was undertaken to study bacterial diversity associated with Indian oil reservoirs and to investigate their potential as a source of industrially valuable enzymes. A total of 103 strains were isolated from five oil reservoirs. PCR-based DNA fingerprinting grouped these strains into 72 genovars. These isolates were identified using morphological, phenotypical and phylogenetic analyses. Most of these isolates were thermophiles (growing at 45◦C or higher), halotolerant (growth at 5% salinity) and were distributed through a variety of genera including but not limited to Bacillus, Chelatococcus, Paenibacillus and Pseudomonas species. The 16S rRNA gene sequence of several strains shared less than 97% homology with the reference sequences in the GenBank database indicating taxonomic novelty of these strains. Assessment of the biotechnological potential of 72 genovars revealed that majority of strains produce one or many of the valuable enzymes including amylase, cellulase, xylanase, pectinase, inulinase, protease, alcohol dehydrogenase and urease. Most of the isolates also degraded crude oil or petroleum hydrocarbons. The vast pool of phenotypic, genetic and functional diversity of the strains retrieved in this study suggested oil reservoirs as yet largely untapped and potent source of taxonomically novel and biotechnologically valuable microorganisms.


2021 ◽  
Vol 9 (11) ◽  
pp. 2266
Author(s):  
Gabrielle Scheffer ◽  
Casey R. J. Hubert ◽  
Dennis R. Enning ◽  
Sven Lahme ◽  
Jaspreet Mand ◽  
...  

Oil reservoirs can represent extreme environments for microbial life due to low water availability, high salinity, high pressure and naturally occurring radionuclides. This study investigated the microbiome of saline formation water samples from a Gulf of Mexico oil reservoir. Metagenomic analysis and associated anaerobic enrichment cultures enabled investigations into metabolic potential for microbial activity and persistence in this environment given its high salinity (4.5%) and low nutrient availability. Preliminary 16S rRNA gene amplicon sequencing revealed very low microbial diversity. Accordingly, deep shotgun sequencing resulted in nine metagenome-assembled genomes (MAGs), including members of novel lineages QPJE01 (genus level) within the Halanaerobiaceae, and BM520 (family level) within the Bacteroidales. Genomes of the nine organisms included respiratory pathways such as nitrate reduction (in Arhodomonas, Flexistipes, Geotoga and Marinobacter MAGs) and thiosulfate reduction (in Arhodomonas, Flexistipes and Geotoga MAGs). Genomic evidence for adaptation to high salinity, withstanding radioactivity, and metal acquisition was also observed in different MAGs, possibly explaining their occurrence in this extreme habitat. Other metabolic features included the potential for quorum sensing and biofilm formation, and genes for forming endospores in some cases. Understanding the microbiomes of deep biosphere environments sheds light on the capabilities of uncultivated subsurface microorganisms and their potential roles in subsurface settings, including during oil recovery operations.


Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Nasim Safaei ◽  
Yvonne Mast ◽  
Michael Steinert ◽  
Katharina Huber ◽  
Boyke Bunk ◽  
...  

Antibiotic producers have mainly been isolated from soil, which often has led to the rediscovery of known compounds. In this study, we identified the freshwater snail Physa acuta as an unexplored source for new antibiotic producers. The bacterial diversity associated with the snail was characterized by a metagenomic approach using cultivation-independent high-throughput sequencing. Although Actinobacteria represented only 2% of the bacterial community, the focus was laid on the isolation of the genus Streptomyces due to its potential to produce antibiotics. Three Streptomyces strains (7NS1, 7NS2 and 7NS3) were isolated from P. acuta, and the antimicrobial activity of the crude extracts were tested against a selection of Gram-positive and Gram-negative bacteria and fungi. 7NS3 showed the strongest activity against Gram-positive bacteria and, thus, was selected for genome sequencing and a phylogenomic analysis. 7NS3 represents a novel Streptomyces species, which was deposited as Streptomyces sp. DSM 110735 at the Leibniz Institute-German Collection of Microorganisms and Cell Cultures (DSMZ). Bioassay-guided high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analyses of crude extract fractions resulted in the detection of four compounds, one of which matched the compound characteristics of emycin A, an angucycline-like aromatic polyketide. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Our study demonstrates that freshwater snails like P. acuta can represent promising reservoirs for the isolation of new antibiotic-producing actinobacterial species.


Fine Focus ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 101-110
Author(s):  
Maedgen Q. Lindsey ◽  
Jennifer R. Huddleston

The goals of this study were to isolate microorganisms from oil well-produced water, identify the microorganisms, and test the microorganisms’ salt tolerance. Saltwater collected from two well locations producing from different zones in Jones County, Texas, was spread onto Mannitol Salt Agar (MSA). Isolates showed a 16S rDNA gene sequence identity of 99% with Idiomarina baltica and Marinobacter persicus. Salt tolerance assays indicated an optimal growth concentration of 10-12.5% NaCl for the Idiomarina isolate and a decrease in growth beyond 5% NaCl for the Marinobacter isolate. In conclusion, organisms that are phylogenetically similar to marine microorganisms are present in oil well environments, and have variable salt tolerances, which may prove useful in microbialmediated hydrocarbon bioremediation of high salinity environments.


2016 ◽  
pp. 7-10
Author(s):  
Ya. O. Antipin

The author suggests and describes the most optimal, reliable method for modeling saturation of the productive oil reservoirs The method takes into account the impact of capillary forces in porous media, water-oil transition zone. This method most fully meets the modern requirements of threedimensional geological and hydrodynamic modeling.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4476 ◽  
Author(s):  
Yuhao Zhu ◽  
Kewen Li ◽  
Changwei Liu ◽  
Mahlalela Bhekumuzi Mgijimi

Development of geothermal resources on abandoned oil reservoirs is considered environmentally friendly. This method could reduce the rate of energy consumption from oil fields. In this study, the feasibility of geothermal energy recovery based on a deep borehole heat exchanger modified from abandoned oil reservoirs using in situ combustion technology is investigated. This system could produce a large amount of heat compensated by in situ combustion in oil reservoir without directly contacting the formation fluid and affecting the oil production. A coupling strategy between the heat exchange system and the oil reservoir was developed to help avoid the high computational cost while ensuring computational accuracy. Several computational scenarios were performed, and results were obtained and analyzed. The computational results showed that an optimal water injection velocity of 0.06 m/s provides a highest outlet temperature of (165.8 °C) and the greatest power output of (164.6 kW) for a single well in all the performed scenarios. Based on the findings of this study, a geothermal energy production system associated with in situ combustion is proposed, specifically for economic reasons, because it can rapidly shorten the payback period of the upfront costs. Modeling was also performed, and based on the modeling data, the proposed technology has a very short payback period of about 4.5 years and a final cumulative net cash flow of about $4.94 million. In conclusion, the present study demonstrates that utilizing geothermal resources or thermal energy in oilfields by adopting in situ combustion technology for enhanced oil recovery is of great significance and has great economic benefits.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2667 ◽  
Author(s):  
Wenxiang Chen ◽  
Zubo Zhang ◽  
Qingjie Liu ◽  
Xu Chen ◽  
Prince Opoku Appau ◽  
...  

Oil production by natural energy of the reservoir is usually the first choice for oil reservoir development. Conversely, to effectively develop tight oil reservoir is challenging due to its ultra-low formation permeability. A novel platform for experimental investigation of oil recovery from tight sandstone oil reservoirs by pressure depletion has been proposed in this paper. A series of experiments were conducted to evaluate the effects of pressure depletion degree, pressure depletion rate, reservoir temperature, overburden pressure, formation pressure coefficient and crude oil properties on oil recovery by reservoir pressure depletion. In addition, the characteristics of pressure propagation during the reservoir depletion process were monitored and studied. The experimental results showed that oil recovery factor positively correlated with pressure depletion degree when reservoir pressure was above the bubble point pressure. Moreover, equal pressure depletion degree led to the same oil recovery factor regardless of different pressure depletion rate. However, it was noticed that faster pressure drop resulted in a higher oil recovery rate. For oil reservoir without dissolved gas (dead oil), oil recovery was 2–3% due to the limited reservoir natural energy. In contrast, depletion from live oil reservoir resulted in an increased recovery rate ranging from 11% to 18% due to the presence of dissolved gas. This is attributed to the fact that when reservoir pressure drops below the bubble point pressure, the dissolved gas expands and pushes the oil out of the rock pore spaces which significantly improves the oil recovery. From the pressure propagation curve, the reason for improved oil recovery is that when the reservoir pressure is lower than the bubble point pressure, the dissolved gas constantly separates and provides additional pressure gradient to displace oil. The present study will help engineers to have a better understanding of the drive mechanisms and influencing factors that affect development of tight oil reservoirs, especially for predicting oil recovery by reservoir pressure depletion.


Sign in / Sign up

Export Citation Format

Share Document