scholarly journals Isolation of Halophilic Bacteria from Inland Petroleum- Producing Wells

Fine Focus ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 101-110
Author(s):  
Maedgen Q. Lindsey ◽  
Jennifer R. Huddleston

The goals of this study were to isolate microorganisms from oil well-produced water, identify the microorganisms, and test the microorganisms’ salt tolerance. Saltwater collected from two well locations producing from different zones in Jones County, Texas, was spread onto Mannitol Salt Agar (MSA). Isolates showed a 16S rDNA gene sequence identity of 99% with Idiomarina baltica and Marinobacter persicus. Salt tolerance assays indicated an optimal growth concentration of 10-12.5% NaCl for the Idiomarina isolate and a decrease in growth beyond 5% NaCl for the Marinobacter isolate. In conclusion, organisms that are phylogenetically similar to marine microorganisms are present in oil well environments, and have variable salt tolerances, which may prove useful in microbialmediated hydrocarbon bioremediation of high salinity environments.

2022 ◽  
Author(s):  
Abdelrahman Kotb ◽  
Tariq Almubarak ◽  
Hisham A. Nasr-El-Din

Abstract Slickwater fracturing has been phenomenally successful in unconventional shale formations due to their unique geomechanical properties. Nevertheless, these treatments consume large volumes of water. On average, hydraulic fracturing treatments use up to 13,000,000 gallons of water in unconventional wells. In an effort to reduce the use of freshwater, research has focused on developing friction reducers (FR) that can be used in high salinity brines such as seawater and produced water. However, commonly used friction reducers precipitate in high salinity brine, lose their friction reduction properties, and cause severe formation damage to the proppant pack. Consequently, this work proposes the use of common surfactants to aid the FR system and achieve salt tolerance at water salinity up to 230,000 ppm. This paper will (a) evaluate five surfactants for use in high salinity FR systems, (b) evaluate the rheological properties of these systems, and (c) evaluate the damage generated from using these systems. Four types of tests were conducted to analyze the performance of the new FR at high salinity brine. These are (a) rheology, (b) static proppant settling, (c) breakability, and (d) coreflood tests. Surfactants with ethylene oxide chain lengths ranging from 6 to 12 were incorporated in the tests. Rheology tests were done at temperatures up to 150°F to evaluate the FR at shear rates between 40-1000 s-1. Proppant settling tests were performed to investigate the proppant carrying capacity of the new FR system. Breakability and coreflood tests were conducted to study the potential damage caused by the proposed systems. Rheology tests showed that using surfactants with high ethylene oxide chain length (>8) improved the performance of the FR at water salinity up to 230,000 ppm. Anionic surfactants performed better than cationic surfactants in improving FR performance. The ammonium persulfate was used as a breaker and showed effectiveness with the proposed formula. Finally, the retained permeability after 12 hours of injecting the FR was over 95%. This shows that after using this system, the productivity of the formation is minimally affected by the new FR system. This research provides the first guide on studying the impact of using different ethylene oxide chain lengths of surfactants in developing new FR systems that can perform well in a high salinity environment. Given the economic and environmental benefits of reusing produced water, this new system can save costs that were previously spent on water treatments.


2018 ◽  
Vol 19 (8) ◽  
pp. 2433 ◽  
Author(s):  
Mohamed El-Esawi ◽  
Abdullah Al-Ghamdi ◽  
Hayssam Ali ◽  
Aisha Alayafi ◽  
Jacques Witczak ◽  
...  

Pisum sativum L. (field pea) is a crop of a high nutritional value and seed oil content. The characterization of pea germplasm is important to improve yield and quality. This study aimed at using fatty acid profiling and amplified fragment length polymorphism (AFLP) markers to evaluate the variation and relationships of 25 accessions of French pea. It also aimed to conduct a marker-trait associations analysis using the crude oil content as the target trait for this analysis, and to investigate whether 5-aminolevulinic acid (ALA) could enhance salt tolerance in the pea germplasm. The percentage of crude oil of the 25 pea genotypes varied from 2.6 to 3.5%, with a mean of 3.04%. Major fatty acids in all of the accessions were linoleic acid. Moreover, the 12 AFLP markers used were polymorphic. The cluster analysis based on fatty acids data or AFLP data divided the 25 pea germplasm into two main clusters. The gene diversity of the AFLP markers varied from 0.21 to 0.58, with a mean of 0.41. Polymorphic information content (PIC) of pea germplasm varied from 0.184 to 0.416 with a mean of 0.321, and their expected heterozygosity (He) varied from 0.212 to 0.477 with a mean of 0.362. The AFLP results revealed that the Nain Ordinaire cultivar has the highest level of genetic variability, whereas Elatius 3 has the lowest level. Three AFLP markers (E-AAC/M-CAA, E-AAC/M-CAC, and E-ACA/M-CAG) were significantly associated with the crude oil content trait. The response of the Nain Ordinaire and Elatius 3 cultivars to high salinity stress was studied. High salinity (150 mM NaCl) slightly reduced the photosynthetic pigments contents in Nain Ordinaire leaves at a non-significant level, however, the pigments contents in the Elatius 3 leaves were significantly reduced by high salinity. Antioxidant enzymes (APX—ascorbate peroxidase; CAT—catalase; and POD—peroxidase) activities were significantly induced in the Nain Ordinaire cultivar, but non-significantly induced in Elatius 3 by high salinity. Priming the salt-stressed Nain Ordinaire and Elatius 3 plants with ALA significantly enhanced the pigments biosynthesis, antioxidant enzymes activities, and stress-related genes expression, as compared to the plants stressed with salt alone. In conclusion, this study is amongst the first investigations that conducted marker-trait associations in pea, and revealed a sort of correlation between the diversity level and salt tolerance.


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80276-80282 ◽  
Author(s):  
Xiping Ma ◽  
Xianzhu Li ◽  
Wanlong Li ◽  
Di Wang ◽  
Chengbin Xu ◽  
...  

According to strain X7's morphological, physiological and biochemical characteristics and 16S rDNA gene sequence, the result showed that strain X7 was Myroides odoratus.


2020 ◽  
Vol 11 (2) ◽  
pp. 94
Author(s):  
Samer Abuzerr ◽  
Kate Zinszer ◽  
Syamand Ahmed Qadir ◽  
Ekrem Atalan ◽  
Halgord Ali M. Farag ◽  
...  

There is growing interest in the antimicrobial discovery of life-threatening multidrug-resistant pathogens. The study was undertaken to isolate, identify, and characterize antibiotic-producing actinomycetaceae, particularly nocadisosaceae, from soil samples of Bingol, Turkey. Soil samples were collected from three different regions of Bingol, Turkey. The physicochemical analysis of the soil samples was immediately measured using standard methods. This was followed by isolation of Nocardiopsaceae, nutritional tests, chemotaxonomic analysis, and molecular characterization. The isolated organisms showed morphological properties consistent with the Nocardiopsaceae soil bacteria.  The 16s rDNA gene sequence indicated a similarity between the strains with 99.86% which was Nocardiopsaceae synnemata-formans. The BLAST hits had a significant e-value of 0.005. The results of the present study revealed that soil Nocardiopsaceae of Bingol appears to have immense potential as a source of antibacterial compounds.


1998 ◽  
Vol 4 (S2) ◽  
pp. 1174-1175
Author(s):  
A.D. Barnabas ◽  
R. Jagels ◽  
W.J. Przybylowicz ◽  
J. Mesjasz-Przybylowicz

Ruppia maritima L. is a submerged halophyte which occurs frequently in estuaries where sodium chloride is the dominant salt. Unlike terrestrial halophytes, R. maritima does not possess any specialised salt-secreting structures such as salt glands. Knowledge of salt tolerance mechanisms in this plant is important to our understanding of its biology. In a previous study it was shown that leaf epidermal cells of R. maritima, which possess transfer cell characteristics, are implicated in salt regulation. In the present investigation, the effect of calcium (Ca) on salt tolerance of leaf epidermal cells was studied since Ca has been found to be an important factor in resistance to salt stress in terrestrial plants.Plants were grown in artificial seawater of high salinity (33%) and at two different Ca concentrations : 400 ppm (high Ca) and 100 ppm (low Ca).


2019 ◽  
Vol 69 (13) ◽  
pp. 1425-1433 ◽  
Author(s):  
Te Wang ◽  
Zhengzhong Jiang ◽  
Wenbo Dong ◽  
Xiaoya Liang ◽  
Linghua Zhang ◽  
...  

Abstract Purpose At present, the nitrogen (N) removal efficiency of the microbial treatment in the high-salinity nitrogenous wastewaters is relatively low. Study on the N removal behavior and properties of moderately halophilic bacteria Halomonas under high salinity is of great significance for the microbial treatment of high-salinity nitrogenous wastewater. Methods The response mechanism of Halomonas sp. B01 to high osmotic pressure stress was investigated by measuring the compatible solute ectoine concentration and superoxide dismutase (SOD) activity. The salt tolerance during growth and N removal of the strain was evaluated by measuring the activities of growth-related and N removal–related enzymes and the mRNA expression abundance of ammonia monooxygenase-encoding gene (amoA). The process of simultaneous heterotrophic nitrification and aerobic denitrification (SND) under high salinity was described by measuring the concentration of inorganic N. Result Halomonas sp. B01 synthesized ectoine under NaCl stress, and the intracellular ectoine concentration increased with increased NaCl concentration in the growth medium. When the NaCl concentration of the medium reached 120 g L−1, the malondialdehyde concentration and SOD activity were significantly increased to 576.1 μg mg−1 and 1.7 U mg−1, respectively. The growth-related and N removal–related enzymes of the strain were active or most active in medium with 30–60 g L−1 NaCl. The amoA of the strain cultured in medium with 60 g L−1 NaCl had the highest mRNA expression abundance. In the N removal medium containing 60 g L−1 NaCl and 2121 mg L−1 NH4+-N, SND by Halomonas sp. B01 was performed over 96 h and the N removal rate reached 98.8%. Conclusion In addition to the protective mechanism of synthetic compatible solutes, Halomonas sp. B01 had the repair mechanism of SOD for lipid peroxidation. The growth-related and N removal–related enzymes of the strain were most active at a certain salt concentration; amoA also had the highest mRNA expression abundance under high salinity. Halomonas sp. B01 could efficiently perform N removal by SND under high salinity.


RSC Advances ◽  
2015 ◽  
Vol 5 (97) ◽  
pp. 79988-79996 ◽  
Author(s):  
Ying Wang ◽  
Hu Chen ◽  
Yu-Xiang Liu ◽  
Rui-Peng Ren ◽  
Yong-Kang Lv

An aerobic nitrifier WY-01 was identified asAlcaligenes faecalisby its 16S rRNA gene sequence analysis. It could remove ammonium effectively in varying physico-chemical conditions, such as low temperature, high salinity and high ammonium loads.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 501-505 ◽  
Author(s):  
Jonathan Kennedy ◽  
Lekha Menon Margassery ◽  
Niall D. O’Leary ◽  
Fergal O’Gara ◽  
John Morrissey ◽  
...  

A Gram-stain-negative, rod-shaped, orange-coloured, catalase- and oxidase-positive, non-motile bacterium, designated strain 92VT, was isolated from the marine sponge Amphilectus fucorum, collected from Lough Hyne, County Cork, Ireland. 16S rRNA gene sequence analysis revealed that strain 92VT clustered with members of the family Flavobacteriaceae , the closest member being Aquimarina latercula NCIMB 1399T, with a gene sequence similarity of 97.5 %. Strain 92VT required seawater for growth with optimal growth occurring at 25 °C, at pH 6–7 and with 3 % (w/v) NaCl. MK-6 was the sole respiratory quinone present and the major fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0, iso-C17 : 1ω9c and iso-C15 : 0 3-OH. The DNA G+C content was 36.1 mol%. Combined phenotypic differences and phylogenetic analysis indicate that strain 92VT represents a novel species of the genus Aquimarina , for which the name Aquimarina amphilecti sp. nov. is proposed. The type strain is 92VT ( = NCIMB 14723T = DSM 25232T).


Sign in / Sign up

Export Citation Format

Share Document