scholarly journals Genomic Characterization of Clinical Listeria monocytogenes Isolates in Beijing, China

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoai Zhang ◽  
Yuzhu Liu ◽  
Penghang Zhang ◽  
Yanlin Niu ◽  
Qian Chen ◽  
...  

Listeria monocytogenes is a foodborne human pathogen that affects public health worldwide. Whole-genome sequencing (WGS) can classify L. monocytogenes isolates and identify virulence islands and resistance genes potentially influencing infectivity. Herein, WGS was used to assess 151 L. monocytogenes isolates from 120 cases of clinical infection in Beijing, China, between 2014 and 2018. Most isolates were either serogroup 1/2a,3a or serogroup 1/2b,3b,7, with 25 multilocus sequence typing (MLST) types (STs) represented, of which ST8, ST87, and ST5 were the most common. Core-genome MLST (cgMLST) grouped the 151 isolates into 116 cgMLST types. The discriminatory power of cgMLST was greater than other subtypes, revealing that isolates from the same patient were highly related (only differing at one allele). Eighty-six isolates formed 30 complexes with ≤ 7 cgMLST alleles between neighboring isolates, suggesting possible outbreaks. Compared with isolates in the United States, ST8, ST121, ST619, ST87, and ST155 isolates were grouped into unified clades. All 151 isolates were positive for common virulence-associated loci, and 26 lineage I isolates harbored the pathogenicity island 3 (LIPI-3) locus, while 42 lineage I isolates harbored the complete LIPI-4 locus. Eleven ST619 isolates had both LIPI-3 and LIPI-4. Among the 151 isolates, 13 were resistant to at least one antibiotic, and no multidrug-resistant isolates were identified. Resistance phenotypes correlated with genotypes, apart from two meropenem resistance isolates. The findings provided insight into the nature of L. monocytogenes strains currently causing clinical disease in Beijing, and WGS analysis indicated possible outbreaks.

2020 ◽  
Author(s):  
Tingyan Zhang ◽  
Yanfeng Lin ◽  
Zhonghong Li ◽  
Xiong Liu ◽  
Jinhui Li ◽  
...  

Abstract Background: The emergence of multi-drug resistant Citrobacter freundii poses daunting challenges to the treatment of clinical infections. The purpose of this study was to characterize the genome of a C. freundii strain with an IncX3 plasmid encoding both the blaNDM-1 and blaSHV-12 genes.Methods: Strain ZT01-0079 was isolated from a clinical urine sample. The Vitek2 system was used for identification and antimicrobial susceptibility testing. The presence of blaNDM-1 was detected by PCR and sequencing. Conjugation experiments and Southern blotting were performed to determine the transferability of the blaNDM-1- carrying plasmid. Nanopore and Illumina sequencing were performed to better understand the genomic characteristics of the strain.Results: Strain ZT01-0079 was identified as C. freundii, and the coexistence of blaNDM-1 and multiple drug resistance genes was confirmed. Electrophoresis and Southern blotting showed that blaNDM-1 was located on a ~53kb IncX3 plasmid. The NDM-1-encoding plasmid was successfully transferred at a frequency of 1.68×10−3. Both blaNDM-1 and blaSHV-12 were located on the self-transferable IncX3 plasmid.Conclusion: The rapid spread of the IncX3 plasmid highlights the importance of continuous monitoring of the prevalence of NDM-1-encoding Enterobacteriaceae. Mutations of existing carbapenem resistance genes will bring formidable challenges to clinical treatment.


2007 ◽  
Vol 73 (12) ◽  
pp. 3887-3895 ◽  
Author(s):  
M. T. S. Fel�cio ◽  
T. Hogg ◽  
P. Gibbs ◽  
P. Teixeira ◽  
M. Wiedmann

ABSTRACT Microbiological characterization of alheiras, traditional smoked meat sausages produced in northern Portugal, had previously shown that more than 60% of the lots analyzed were contaminated with Listeria monocytogenes at levels higher than 100 CFU/g. In order to better understand L. monocytogenes contamination patterns in alheiras, we characterized 128 L. monocytogenes isolates from alheiras using a variety of subtyping techniques (i.e., molecular serotyping; arsenic, cadmium, and tetracycline resistance typing; and pulsed-field gel electrophoresis [PFGE]). Subtyping of isolates from products collected on two separate dates provided evidence for the persistence of specific L. monocytogenes PFGE types in the production and distribution chains of alheiras from four different processors. A subset of 21 isolates was further characterized using ribotyping and Caco-2 cell invasion assays to evaluate the pathogenic potential of L. monocytogenes present in alheiras. Caco-2 invasion assays revealed seven isolates with invasion efficiencies that were less than 20% of that of the control strain 10403S. All seven isolates had premature stop codons in inlA that represented three distinct mutations, which had previously been observed in isolates from the United States or France. Our findings indicate the need for a comprehensive approach to control L. monocytogenes in alheiras, including strategies to reduce persistence. The presence of considerable diversity in invasion phenotypes among L. monocytogenes strains present in alheiras, including the presence of subtypes likely to be virulence attenuated, may provide an opportunity to initially focus control strategies on the subtypes most likely to cause human disease.


2020 ◽  
Vol 11 ◽  
Author(s):  
Monika Kurpas ◽  
Jacek Osek ◽  
Alexandra Moura ◽  
Alexandre Leclercq ◽  
Marc Lecuit ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e42448 ◽  
Author(s):  
Pongpan Laksanalamai ◽  
Lavin A. Joseph ◽  
Benjamin J. Silk ◽  
Laurel S. Burall ◽  
Cheryl L. Tarr ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 171 ◽  
Author(s):  
Amber Hilliard ◽  
Dara Leong ◽  
Amy O’Callaghan ◽  
Eamonn Culligan ◽  
Ciara Morgan ◽  
...  

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 427 ◽  
Author(s):  
Lorraine D Rodriguez-Rivera ◽  
Andrea I Moreno Switt ◽  
Lovorka Degoricija ◽  
Rixun Fang ◽  
Craig A Cummings ◽  
...  

2004 ◽  
Vol 70 (10) ◽  
pp. 5833-5841 ◽  
Author(s):  
Michael J. Gray ◽  
Ruth N. Zadoks ◽  
Esther D. Fortes ◽  
Belgin Dogan ◽  
Steven Cai ◽  
...  

ABSTRACT A total of 502 Listeria monocytogenes isolates from food and 492 from humans were subtyped by EcoRI ribotyping and PCR-restriction fragment length polymorphism analysis of the virulence gene hly. Isolates were further classified into genetic lineages based on subtyping results. Food isolates were obtained through a survey of selected ready-to-eat food products in Maryland and California in 2000 and 2001. Human isolates comprised 42 isolates from invasive listeriosis cases reported in Maryland and California during 2000 and 2001 as well as an additional 450 isolates from cases that had occurred throughout the United States, predominantly from 1997 to 2001. Assignment of isolates to lineages and to the majority of L. monocytogenes subtypes was significantly associated with the isolate source (food or human), although most subtypes and lineages included both human and food isolates. Some subtypes were also significantly associated with isolation from specific food types. Tissue culture plaque assay characterization of the 42 human isolates from Maryland and California and of 91 representative food isolates revealed significantly higher average infectivity and cell-to-cell spread for the human isolates, further supporting the hypothesis that food and human isolates form distinct populations. Combined analysis of subtype and cytopathogenicity data showed that strains classified into specific ribotypes previously linked to multiple human listeriosis outbreaks, as well as those classified into lineage I, are more common among human cases and generate larger plaques than other subtypes, suggesting that these subtypes may represent particularly virulent clonal groups. These data will provide a framework for prediction of the public health risk associated with specific L. monocytogenes subtypes.


2020 ◽  
Vol 50 (5) ◽  
Author(s):  
Taís Fukuta Cruz ◽  
Thiago Neves Batista ◽  
Ester Mariane Vieira ◽  
Luiz Marcos Frediani Portela ◽  
Amanda Mahnke Baccarin ◽  
...  

ABSTRACT: Because Canine circovirus (CanineCV) is a new species of the genus Circovirus, several issues related to its epidemiology, pathogenesis and clinical disease remain unknown. Thus, this study aimed to perform the characterization of the first complete genome sequence of CanineCV detected in a dog with diarrhea in Brazil. A stool sample was collected of a ten-month-old female German Shepherd dog which had signs of intermittent hemorrhagic gastroenteritis, vomiting, and a history of eating raw pork. The complete CanineCV genome was sequenced by Next-Generation Sequencing. The sequence had 2,063 nucleotides, showed a typical genomic organization for circovirus, and was grouped with strain 214 described in the United States by phylogenetic analysis. One amino acid change was found in the replicase protein, and because of that it was considered unique to CanineCV. Therefore, the characterization of the complete genome of Brazilian CanineCV can be used in future studies of molecular epidemiology, pathogenesis and development of diagnostic tools for the prevention and control of this disease.


Sign in / Sign up

Export Citation Format

Share Document