scholarly journals Zinc Oxide Nanoparticles Prime a Protective Immune Response in Galleria mellonella to Defend Against Candida albicans

2021 ◽  
Vol 12 ◽  
Author(s):  
Mei-nian Xu ◽  
Li Li ◽  
Wen Pan ◽  
Huan-xin Zheng ◽  
Meng-lei Wang ◽  
...  

Purpose: Zinc oxide nanoparticles (ZnO-NPs) have exerted antimicrobial properties. However, there is insufficient evaluation regarding the in vivo antifungal activity of ZnO-NPs. This study aimed to investigate the efficacy and mechanism of ZnO-NPs in controlling Candida albicans in the invertebrate Galleria mellonella.Methods:Galleria mellonella larvae were injected with different doses of ZnO-NPs to determine their in vivo toxicity. Non-toxic doses of ZnO-NPs were chosen for prophylactic injection in G. mellonella followed by C. albicans infection. Then the direct in vitro antifungal effect of ZnO-NPs against C. albicans was evaluated. In addition, the mode of action of ZnO-NPs was assessed in larvae through different assays: quantification of hemocyte density, morphology observation of hemocytes, characterization of hemocyte aggregation and phagocytosis, and measurement of hemolymph phenoloxidase (PO) activity.Results: Zinc oxide nanoparticles were non-toxic to the larvae at relatively low concentrations (≤20 mg/kg). ZnO-NP pretreatment significantly prolonged the survival of C. albicans-infected larvae and decreased the fungal dissemination and burden in the C. albicans-infected larvae. This observation was more related to the activation of host defense rather than their fungicidal capacities. Specifically, ZnO-NP treatment increased hemocyte density, promoted hemocyte aggregation, enhanced hemocyte phagocytosis, and activated PO activity in larvae.Conclusion: Prophylactic treatment with lower concentrations of ZnO-NPs protects G. mellonella from C. albicans infection. The innate immune response primed by ZnO-NPs may be part of the reason for the protective effects. This study provides new evidence of the capacity of ZnO-NPs in enhancing host immunity and predicts that ZnO-NPs will be attractive for further anti-infection applications.

Author(s):  
Elsayim Rasha ◽  
Manal M. Alkhulaifi ◽  
Monerah AlOthman ◽  
Ibrahim Khalid ◽  
Elnagar Doaa ◽  
...  

Currently, the mortality rate in Saudi Arabia’s ICUs is increasing due to the spread of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. This study was carried out to evaluate the ability of biologically synthesized zinc oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome carbapenem-resistant K. pneumoniae (KPC) in vitro and in vivo. ZnO-NPs were synthesized via a biological method and characterized using UV–Vis spectroscopy, Zetasizer and zeta potential analyses, x-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by a macro-dilution method. The morphological alteration of KPC cells after ZnO-NPs treatment was observed by SEM. The in vivo susceptibility of KPC cells to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape, and size of the synthesized nanoparticles. The MIC and MBC were 0.7 and 1.8 mg/ml, respectively. The in vivo results displayed reduced inflammation and wound re-epithelialization of KPC-infected rats. These findings demonstrated that ZnO-NPs have great potential to be developed as antibacterial agents.


2021 ◽  
Author(s):  
Mostafa elansary ◽  
Ragaa Hamouda ◽  
Maha Elshamy

Abstract We appraised the use of zinc oxide nanoparticles, (ZnO-NPs) and zinc oxide bulk (ZnO-bulk) or zinc acetate, as a natural nematocide, alone or in combination with oxamyl in vitro and in vivo trials in order to improve systems for root-knot nematode (RKNs) control in banana plants. Especially, ZnO-NPs were biosynthesized from the alga, Ulva fasciata. In general, all applications of ZnO-NPs were more effective to control RKNs than ZnO-bulk as well oxamyl alone (chemical control). In in vitro conditions, ZnO-NPs with oxamyl showed 98.91% second stage juveniles2 (J2s) mortality of Meloidogyne incognita after 72 hrs, while 72.86% mortality was observed at the same NPs treatment without oxamyl at the same exposure time. The same treatment was the most effective in diminution of J2s community (82.77%) in soil and galls number (81.87%) in roots under in vivo conditions. In contrast, the highest weight and height of the shoot was observed in Zn-bulk treatment in combination with oxamyl as well oxamyl only (nematocides check). Scanning electron microscopy (SEM) reports displayed the distributions and accumulations of ZnO-NPs on the nematode (J2s) body under direct exposure, which might be the reason of NP-mediated toxicity and disruption for M. incognita.


Author(s):  
Aliaa M. Radwan ◽  
Eman F. Aboelfetoh ◽  
Tetsunari Kimura ◽  
Tarek M. Mohamed ◽  
Mai M. El-Keiy

Background: Zinc oxide nanoparticles (ZnO NPs) are one of the metal oxide nanoparticles, which have attracted the interest of the researchers due to their biocompatibility, easily surface functionalization, and cancer targeting. Objective: This study was designated to investigate the potential antitumor activity of the biologically synthesized ZnO NPs alone or in combination with doxorubicin using Ehrlich ascites carcinoma (EAC) model. Methods: In this study, ZnO NPs were prepared by green approach using fenugreek seeds extract as reducing and capping agent then characterized by scanning electron microscope (SEM), energy dispersive x-ray (EDX), X-ray diffraction (XRD), UV-V spectroscopy, and transmission electron microscope (TEM). The prepared nanoparticles were tested for in vitro and in vivo studies using different parameters. Results: Zinc oxide nanoparticles were determined to have cytotoxicity against different cancer cell lines with lower toxicity against normal one. Moreover, the in vivo study, demonstrated that the intraperitoneal injection of ZnO NPs alone or combined with doxorubicin in EAC mice inhibited the proliferation and growth of EAC by decreasing the ascetic volume and viable tumor cell count. This anti-proliferative efficiency of ZnO NPs was due to cell cycle arrest at G0/G1 phase and induction of apoptosis via upregulating the expression of caspase-3 and Bax and downregulating the expression of Bcl-2. Conclusion: Our findings indicated that the biologically synthesized ZnO NPs may be a promising nanomedicine therapy for cancer treatment in the future.


2021 ◽  
Author(s):  
Elsayim Rasha ◽  
Alkhulaifi Manal ◽  
AlOthman Monerah ◽  
Ibrahim Khalid ◽  
Elnagar Doaa ◽  
...  

Abstract Currently, the mortality rate is increasing in Saudi Arabia's ICU, due to the spread of KPC. This project was carried out to evaluate the ability of the biological synthesized of zinc Oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome Carbapenem-Resistant Klebsiella pneumonia (KPC) in vitro and in vivo. ZnO-NPs was synthesized via a biological method and characterized using UV-Vis spectroscopy, Zeta sizer and Zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method, MIC and MBC was determined by macro dilution method. The morphological alteration of KPC cell after ZnO-NPs treatment was showed by SEM. In vivo susceptibility of KPC to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape and size of the synthesized nanoparticles. The MIC and MBC results was found in 0.7mg\ml and 1.8mg\ml respectively. in vivo results displayed the inflammation reduction and wound healing re-epithelialisation of kpc infected rats. these findings demonstrated that ZnO-NPs has great potential to be developed as antibacterial agents and wound healing.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


2021 ◽  
Vol 8 (8) ◽  
pp. 4483-4496
Author(s):  
Aliaa M. Radwan ◽  
Eman F. Aboelfetoh ◽  
Tetsunari Kimura ◽  
Tarek M. Mohamed ◽  
Mai M. El-Keiy

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2784 ◽  
Author(s):  
Alicja Tymoszuk ◽  
Jacek Wojnarowicz

Zinc oxide nanoparticles (ZnO NPs) are ones of the most commonly manufactured nanomaterials worldwide. They can be used as a zinc fertilizer in agriculture to enhance yielding and to control the occurrence of diseases thanks to its broad antifungal and antibacterial action. The aim of this study was to investigate and compare the effects of ZnO submicron particles (ZnO SMPs) and ZnO NPs on the process of in vitro seed germination and seedling growth in onion (Allium cepa L. ‘Sochaczewska’), and to indicate the potential use of these compounds in onion production. In the experiment, disinfected seeds were inoculated on the modified Murashige and Skoog (MS) medium and poured with ZnO SMP or ZnO NP water suspension, at the concentrations of 50, 100, 200, 400, 800, 1600, and 3200 mg∙L−1. During three successive weeks, the germinating seeds were counted. Germination started most often on the second or third day of in vitro culture. The highest share of germination was recorded for seeds treated with 800 mg∙L−1 ZnO SMPs and ZnO NPs (52% and 56%, respectively). After the application of ZnO SMPs and ZnO NPs at the highest tested concentration (3200 mg∙L−1), the share of germinating seeds was only 19% and 11%, respectively. Interestingly, seedlings obtained from control seeds and seeds treated with ZnO SMPs and ZnO NPs did not differ statistically in terms of length, fresh weight, and dry weight of leaves, and roots. Both ZnO SMPs and ZnO NPs, in the concentration range from 50 to 1600 mg∙L−1, can be used to stimulate the germination process of onion seeds, without negative effects on the further growth and development of seedlings. There were no differences found between the action of ZnO NPs and ZnO SMPs, which suggested that the most important factor influencing seed germination was in fact the concentration of zinc ions, not the particle size.


2019 ◽  
Vol 20 (16) ◽  
pp. 4042 ◽  
Author(s):  
Jingcao Shen ◽  
Dan Yang ◽  
Xingfan Zhou ◽  
Yuqian Wang ◽  
Shichuan Tang ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have shown adverse health impact on the human male reproductive system, with evidence of inducing apoptosis. However, whether or not ZnO NPs could promote autophagy, and the possible role of autophagy in the progress of apoptosis, remain unclear. In the current study, in vitro and in vivo toxicological responses of ZnO NPs were explored by using a mouse model and mouse Leydig cell line. It was found that intragastrical exposure of ZnO NPs to mice for 28 days at the concentrations of 100, 200, and 400 mg/kg/day disrupted the seminiferous epithelium of the testis and decreased the sperm density in the epididymis. Furthermore, serum testosterone levels were markedly reduced. The induction of apoptosis and autophagy in the testis tissues was disclosed by up-regulating the protein levels of cleaved Caspase-8, cleaved Caspase-3, Bax, LC3-II, Atg 5, and Beclin 1, accompanied by down-regulation of Bcl 2. In vitro tests showed that ZnO NPs could induce apoptosis and autophagy with the generation of oxidative stress. Specific inhibition of autophagy pathway significantly decreased the cell viability and up-regulated the apoptosis level in mouse Leydig TM3 cells. In summary, ZnO NPs can induce apoptosis and autophagy via oxidative stress, and autophagy might play a protective role in ZnO NPs-induced apoptosis of mouse Leydig cells.


Sign in / Sign up

Export Citation Format

Share Document